Spaces:
Sleeping
Sleeping
Commit
·
3a3e2e6
1
Parent(s):
460bccf
code works
Browse files- app.py +8 -10
- demo.ipynb +104 -0
app.py
CHANGED
@@ -13,7 +13,7 @@ try:
|
|
13 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
14 |
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
"HuggingFaceTB/SmolVLM-Instruct",
|
16 |
-
torch_dtype=torch.bfloat16
|
17 |
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
18 |
).to(DEVICE)
|
19 |
except Exception as e:
|
@@ -56,23 +56,21 @@ def answer_question(image, question):
|
|
56 |
except Exception as e:
|
57 |
return f"Error: Failed to prepare inputs. {str(e)}"
|
58 |
|
59 |
-
# Generate the
|
60 |
try:
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
65 |
-
return generated_texts[0]
|
66 |
except Exception as e:
|
67 |
-
return f"Error: Failed to generate
|
68 |
|
69 |
|
70 |
# Create Gradio interface
|
71 |
iface = gr.Interface(
|
72 |
fn=answer_question,
|
73 |
inputs=[
|
74 |
-
gr.
|
75 |
-
gr.
|
76 |
],
|
77 |
outputs="text",
|
78 |
title="Image Question Answering",
|
|
|
13 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
14 |
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
"HuggingFaceTB/SmolVLM-Instruct",
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
18 |
).to(DEVICE)
|
19 |
except Exception as e:
|
|
|
56 |
except Exception as e:
|
57 |
return f"Error: Failed to prepare inputs. {str(e)}"
|
58 |
|
59 |
+
# Generate the answer
|
60 |
try:
|
61 |
+
outputs = model.generate(**inputs)
|
62 |
+
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
63 |
+
return answer
|
|
|
|
|
64 |
except Exception as e:
|
65 |
+
return f"Error: Failed to generate answer. {str(e)}"
|
66 |
|
67 |
|
68 |
# Create Gradio interface
|
69 |
iface = gr.Interface(
|
70 |
fn=answer_question,
|
71 |
inputs=[
|
72 |
+
gr.Image(type="numpy"),
|
73 |
+
gr.Textbox(lines=2, placeholder="Enter your question here..."),
|
74 |
],
|
75 |
outputs="text",
|
76 |
title="Image Question Answering",
|
demo.ipynb
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/home/kask/miniconda3/envs/innovatie-week/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"from transformers import AutoProcessor, AutoModelForVision2Seq\n",
|
19 |
+
"from transformers.image_utils import load_image\n",
|
20 |
+
"import numpy as np\n",
|
21 |
+
"import gradio as gr\n",
|
22 |
+
"import torch\n",
|
23 |
+
"from PIL import Image"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 3,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"cpu\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"# Set the device (GPU or CPU)\n",
|
41 |
+
"DEVICE = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
42 |
+
"print(DEVICE)"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [
|
50 |
+
{
|
51 |
+
"name": "stderr",
|
52 |
+
"output_type": "stream",
|
53 |
+
"text": [
|
54 |
+
"Some kwargs in processor config are unused and will not have any effect: image_seq_len. \n"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"ename": "",
|
59 |
+
"evalue": "",
|
60 |
+
"output_type": "error",
|
61 |
+
"traceback": [
|
62 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
63 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
64 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
65 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
66 |
+
]
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"source": [
|
70 |
+
"# Initialize processor and model\n",
|
71 |
+
"try:\n",
|
72 |
+
" processor = AutoProcessor.from_pretrained(\"HuggingFaceTB/SmolVLM-Instruct\")\n",
|
73 |
+
" model = AutoModelForVision2Seq.from_pretrained(\n",
|
74 |
+
" \"HuggingFaceTB/SmolVLM-Instruct\",\n",
|
75 |
+
" torch_dtype=torch.bfloat16,\n",
|
76 |
+
" _attn_implementation=\"flash_attention_2\" if DEVICE == \"cuda\" else \"eager\",).to(DEVICE)\n",
|
77 |
+
"except Exception as e:\n",
|
78 |
+
" print(f\"Error loading model or processor: {str(e)}\")\n",
|
79 |
+
" exit(1)"
|
80 |
+
]
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"metadata": {
|
84 |
+
"kernelspec": {
|
85 |
+
"display_name": "innovatie-week",
|
86 |
+
"language": "python",
|
87 |
+
"name": "python3"
|
88 |
+
},
|
89 |
+
"language_info": {
|
90 |
+
"codemirror_mode": {
|
91 |
+
"name": "ipython",
|
92 |
+
"version": 3
|
93 |
+
},
|
94 |
+
"file_extension": ".py",
|
95 |
+
"mimetype": "text/x-python",
|
96 |
+
"name": "python",
|
97 |
+
"nbconvert_exporter": "python",
|
98 |
+
"pygments_lexer": "ipython3",
|
99 |
+
"version": "3.12.1"
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"nbformat": 4,
|
103 |
+
"nbformat_minor": 2
|
104 |
+
}
|