Spaces:
Sleeping
Sleeping
File size: 11,752 Bytes
6ee2eb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
from timeit import default_timer as timer
from datetime import timedelta
from PIL import Image
import os
import numpy as np
from einops import rearrange
import torch
import torch.nn.functional as F
from torchvision import transforms
import transformers
from accelerate import Accelerator
from accelerate.utils import set_seed
from packaging import version
from PIL import Image
import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
from diffusers.models.attention_processor import (
AttnAddedKVProcessor,
AttnAddedKVProcessor2_0,
LoRAAttnAddedKVProcessor,
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
SlicedAttnAddedKVProcessor,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.17.0")
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
if tokenizer_max_length is not None:
max_length = tokenizer_max_length
else:
max_length = tokenizer.model_max_length
text_inputs = tokenizer(
prompt,
truncation=True,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
return text_inputs
def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=False):
text_input_ids = input_ids.to(text_encoder.device)
if text_encoder_use_attention_mask:
attention_mask = attention_mask.to(text_encoder.device)
else:
attention_mask = None
prompt_embeds = text_encoder(
text_input_ids,
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
return prompt_embeds
# model_path: path of the model
# image: input image, have not been pre-processed
# save_lora_dir: the path to save the lora
# prompt: the user input prompt
# lora_steps: number of lora training step
# lora_lr: learning rate of lora training
# lora_rank: the rank of lora
def train_lora(image, prompt, save_lora_dir, model_path=None, tokenizer=None, text_encoder=None, vae=None, unet=None, noise_scheduler=None, lora_steps=200, lora_lr=2e-4, lora_rank=16, weight_name=None, safe_serialization=False, progress=tqdm):
# initialize accelerator
accelerator = Accelerator(
gradient_accumulation_steps=1,
# mixed_precision='fp16'
)
set_seed(0)
# Load the tokenizer
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(
model_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
# initialize the model
if noise_scheduler is None:
noise_scheduler = DDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
if text_encoder is None:
text_encoder_cls = import_model_class_from_model_name_or_path(model_path, revision=None)
text_encoder = text_encoder_cls.from_pretrained(
model_path, subfolder="text_encoder", revision=None
)
if vae is None:
vae = AutoencoderKL.from_pretrained(
model_path, subfolder="vae", revision=None
)
if unet is None:
unet = UNet2DConditionModel.from_pretrained(
model_path, subfolder="unet", revision=None
)
# set device and dtype
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
unet.to(device)
vae.to(device)
text_encoder.to(device)
# initialize UNet LoRA
unet_lora_attn_procs = {}
for name, attn_processor in unet.attn_processors.items():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
else:
raise NotImplementedError("name must start with up_blocks, mid_blocks, or down_blocks")
if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
lora_attn_processor_class = LoRAAttnAddedKVProcessor
else:
lora_attn_processor_class = (
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
)
unet_lora_attn_procs[name] = lora_attn_processor_class(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank
)
unet.set_attn_processor(unet_lora_attn_procs)
unet_lora_layers = AttnProcsLayers(unet.attn_processors)
# Optimizer creation
params_to_optimize = (unet_lora_layers.parameters())
optimizer = torch.optim.AdamW(
params_to_optimize,
lr=lora_lr,
betas=(0.9, 0.999),
weight_decay=1e-2,
eps=1e-08,
)
lr_scheduler = get_scheduler(
"constant",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=lora_steps,
num_cycles=1,
power=1.0,
)
# prepare accelerator
unet_lora_layers = accelerator.prepare_model(unet_lora_layers)
optimizer = accelerator.prepare_optimizer(optimizer)
lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)
# initialize text embeddings
with torch.no_grad():
text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None)
text_embedding = encode_prompt(
text_encoder,
text_inputs.input_ids,
text_inputs.attention_mask,
text_encoder_use_attention_mask=False
)
if type(image) == np.ndarray:
image = Image.fromarray(image)
# initialize latent distribution
image_transforms = transforms.Compose(
[
transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
# transforms.RandomCrop(512),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
image = image_transforms(image).to(device)
image = image.unsqueeze(dim=0)
latents_dist = vae.encode(image).latent_dist
for _ in progress.tqdm(range(lora_steps), desc="Training LoRA..."):
unet.train()
model_input = latents_dist.sample() * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
bsz, channels, height, width = model_input.shape
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
timesteps = timesteps.long()
# Add noise to the model input according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
# Predict the noise residual
model_pred = unet(noisy_model_input, timesteps, text_embedding).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# save the trained lora
# unet = unet.to(torch.float32)
# vae = vae.to(torch.float32)
# text_encoder = text_encoder.to(torch.float32)
# unwrap_model is used to remove all special modules added when doing distributed training
# so here, there is no need to call unwrap_model
# unet_lora_layers = accelerator.unwrap_model(unet_lora_layers)
LoraLoaderMixin.save_lora_weights(
save_directory=save_lora_dir,
unet_lora_layers=unet_lora_layers,
text_encoder_lora_layers=None,
weight_name=weight_name,
safe_serialization=safe_serialization
)
def load_lora(unet, lora_0, lora_1, alpha):
lora = {}
for key in lora_0:
lora[key] = (1 - alpha) * lora_0[key] + alpha * lora_1[key]
unet.load_attn_procs(lora)
return unet
# import safetensors
# unet = UNet2DConditionModel.from_pretrained(
# "stabilityai/stable-diffusion-2-1-base", subfolder="unet", revision=None
# )
# lora = safetensors.torch.load_file("../models/lora/majicmixRealistic_betterV2V25.safetensors", device="cuda")
# unet = safetensors.torch.load_file("../stabilityai/stable-diffusion-1-5/v1-5-pruned-emaonly.safetensors", device="cuda")
# with open("lora.txt", "w") as f:
# for key in lora:
# f.write(f"{key} {lora[key].shape}\n")
# with open("unet.txt", "w") as f:
# for key in unet:
# f.write(f"{key} {unet[key].shape}\n")
# unet.load_attn_procs(lora)
# lora_path = "models/lora"
# image_path_1 = "input/sculpture.jpg"
# # image_path_0 = "input/realdog0.jpg"
# prompt = "a photo of a sculpture"
# train_lora(Image.open(image_path_1), prompt, lora_path, "stabilityai/stable-diffusion-1-5", weight_name="sculpture_v15.safetensors", safe_serialization=True)
# train_lora(image_path_0, prompt, "stabilityai/stable-diffusion-2-1-base", lora_path, weight_name="realdog0.ckpt")
# realdog1_lora = torch.load(os.path.join(lora_path, "realdog1.ckpt"))
# realdog0_lora = torch.load(os.path.join(lora_path, "realdog0.ckpt"))
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float32)
# pipe.to("cuda")
# for t in torch.linspace(0, 1, 10):
# lora = {}
# for key in realdog0_lora:
# lora[key] = (1 - t) * realdog1_lora[key] + t * realdog0_lora[key]
# pipe.unet.load_attn_procs(lora)
# image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
# image.save(f"test/lora_interp/{t}.jpg") |