Spaces:
Sleeping
Sleeping
File size: 10,981 Bytes
6ee2eb6 859c0cf 6ee2eb6 859c0cf 6ee2eb6 859c0cf 6ee2eb6 859c0cf 6ee2eb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import torch
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from datetime import datetime
from morph_attn import DiffMorpherPipeline
from lora_utils import train_lora
LENGTH=450
def train_lora_interface(
image,
prompt,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
num
):
os.makedirs(output_path, exist_ok=True)
train_lora(image, prompt, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_{num}.ckpt", progress=gr.Progress())
return f"Train LoRA {'A' if num == 0 else 'B'} Done!"
def run_diffmorpher(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path
):
run_id = datetime.now().strftime("%H%M") + "_" + datetime.now().strftime("%Y%m%d")
os.makedirs(output_path, exist_ok=True)
morpher_pipeline = DiffMorpherPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cuda")
if lora_mode == "Fix LoRA 0":
fix_lora = 0
elif lora_mode == "Fix LoRA 1":
fix_lora = 1
else:
fix_lora = None
if not load_lora_path_0:
load_lora_path_0 = f"{output_path}/lora_0.ckpt"
if not load_lora_path_1:
load_lora_path_1 = f"{output_path}/lora_1.ckpt"
images = morpher_pipeline(
img_0=image_0,
img_1=image_1,
prompt_0=prompt_0,
prompt_1=prompt_1,
load_lora_path_0=load_lora_path_0,
load_lora_path_1=load_lora_path_1,
lamb=lamb,
use_adain=use_adain,
use_reschedule=use_reschedule,
num_frames=num_frames,
fix_lora=fix_lora,
progress=gr.Progress()
)
video_path = f"{output_path}/{run_id}.mp4"
video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (512, 512))
for i, image in enumerate(images):
# image.save(f"{output_path}/{i}.png")
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
cv2.destroyAllWindows()
return gr.Video(value=video_path, format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
def run_all(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path,
lora_steps,
lora_rank,
lora_lr
):
os.makedirs(output_path, exist_ok=True)
train_lora(image_0, prompt_0, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_0.ckpt", progress=gr.Progress())
train_lora(image_1, prompt_1, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_1.ckpt", progress=gr.Progress())
return run_diffmorpher(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path
)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("""
# Official Implementation of [DiffMorpher](https://kevin-thu.github.io/DiffMorpher_page/)
""")
original_image_0, original_image_1 = gr.State(Image.open("Trump.jpg").convert("RGB").resize((512,512), Image.BILINEAR)), gr.State(Image.open("Biden.jpg").convert("RGB").resize((512,512), Image.BILINEAR))
# key_points_0, key_points_1 = gr.State([]), gr.State([])
# to_change_points = gr.State([])
with gr.Row():
with gr.Column():
input_img_0 = gr.Image(type="numpy", label="Input image A", value="Trump.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
prompt_0 = gr.Textbox(label="Prompt for image A", value="a photo of an American man", interactive=True)
with gr.Row():
train_lora_0_button = gr.Button("Train LoRA A")
train_lora_1_button = gr.Button("Train LoRA B")
# show_correspond_button = gr.Button("Show correspondence points")
with gr.Column():
input_img_1 = gr.Image(type="numpy", label="Input image B ", value="Biden.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
prompt_1 = gr.Textbox(label="Prompt for image B", value="a photo of an American man", interactive=True)
with gr.Row():
clear_button = gr.Button("Clear All")
run_button = gr.Button("Run w/o LoRA training")
with gr.Column():
output_video = gr.Video(format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
lora_progress_bar = gr.Textbox(label="Display LoRA training progress", interactive=False)
run_all_button = gr.Button("Run!")
# with gr.Column():
# output_video = gr.Video(label="Output video", show_label=True, height=LENGTH, width=LENGTH)
with gr.Row():
gr.Markdown("""
### Usage:
1. Upload two images (with correspondence) and fill out the prompts.
2. Click **"Run!"**
Or:
1. Upload two images (with correspondence) and fill out the prompts.
2. Click the **"Train LoRA A/B"** button to fit two LoRAs for two images respectively. <br>
If you have trained LoRA A or LoRA B before, you can skip the step and fill the specific LoRA path in LoRA settings. <br>
Trained LoRAs are saved to `[Output Path]/lora_0.ckpt` and `[Output Path]/lora_1.ckpt` by default.
3. You might also change the settings below.
4. Click **"Run w/o LoRA training"**
### Note:
1. To speed up the generation process, you can **ruduce the number of frames** or **turn off "Use Reschedule"**.
2. You can try the influence of different prompts. It seems that using the same prompts or aligned prompts works better.
### Have fun!
""")
with gr.Accordion(label="Algorithm Parameters"):
with gr.Tab("Basic Settings"):
with gr.Row():
# local_models_dir = 'local_pretrained_models'
# local_models_choice = \
# [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
model_path = gr.Text(value="stabilityai/stable-diffusion-2-1-base",
label="Diffusion Model Path", interactive=True
)
lamb = gr.Slider(value=0.6, minimum=0, maximum=1, step=0.1, label="Lambda for attention replacement", interactive=True)
lora_mode = gr.Dropdown(value="LoRA Interp",
label="LoRA Interp. or Fix LoRA",
choices=["LoRA Interp", "Fix LoRA A", "Fix LoRA B"],
interactive=True
)
use_adain = gr.Checkbox(value=True, label="Use AdaIN", interactive=True)
use_reschedule = gr.Checkbox(value=True, label="Use Reschedule", interactive=True)
with gr.Row():
num_frames = gr.Number(value=15, minimum=0, label="Number of Frames", precision=0, interactive=True)
fps = gr.Number(value=8, minimum=0, label="FPS (Frame rate)", precision=0, interactive=True)
output_path = gr.Text(value="./results", label="Output Path", interactive=True)
with gr.Tab("LoRA Settings"):
with gr.Row():
lora_steps = gr.Number(value=200, label="LoRA training steps", precision=0, interactive=True)
lora_lr = gr.Number(value=0.0002, label="LoRA learning rate", interactive=True)
lora_rank = gr.Number(value=16, label="LoRA rank", precision=0, interactive=True)
# save_lora_dir = gr.Text(value="./lora", label="LoRA model save path", interactive=True)
load_lora_path_0 = gr.Text(value="", label="LoRA model load path for image A", interactive=True)
load_lora_path_1 = gr.Text(value="", label="LoRA model load path for image B", interactive=True)
def store_img(img):
image = Image.fromarray(img).convert("RGB").resize((512,512), Image.BILINEAR)
# resize the input to 512x512
# image = image.resize((512,512), Image.BILINEAR)
# image = np.array(image)
# when new image is uploaded, `selected_points` should be empty
return image
input_img_0.upload(
store_img,
[input_img_0],
[original_image_0]
)
input_img_1.upload(
store_img,
[input_img_1],
[original_image_1]
)
def clear(LENGTH):
return gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
None, None, None, None
clear_button.click(
clear,
[gr.Number(value=LENGTH, visible=False, precision=0)],
[input_img_0, input_img_1, original_image_0, original_image_1, prompt_0, prompt_1]
)
train_lora_0_button.click(
train_lora_interface,
[
original_image_0,
prompt_0,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
gr.Number(value=0, visible=False, precision=0)
],
[lora_progress_bar]
)
train_lora_1_button.click(
train_lora_interface,
[
original_image_1,
prompt_1,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
gr.Number(value=1, visible=False, precision=0)
],
[lora_progress_bar]
)
run_button.click(
run_diffmorpher,
[
original_image_0,
original_image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path
],
[output_video]
)
run_all_button.click(
run_all,
[
original_image_0,
original_image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
load_lora_path_0,
load_lora_path_1,
output_path,
lora_steps,
lora_rank,
lora_lr
],
[output_video]
)
demo.queue().launch(debug=True) |