File size: 8,156 Bytes
e26f7dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
"""week2assignment_shakes.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1OfNmkHMwkuJONUG4yQHDwJiuzLJvF1kJ
"""

!pip install openai langchain python-dotenv -q

!echo openai_api_key="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" > .env

import os
import openai
from dotenv import load_dotenv

load_dotenv(".env")

openai.api_key = os.environ.get("openai_api_key")

from IPython.display import display, Markdown

def disp_markdown(text: str) -> None:
  display(Markdown(text))

from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

chat_model = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=os.environ.get("openai_api_key"))

from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

# The SystemMessage is associated with the system role
system_message = SystemMessage(content="You are a food critic.")

# The HumanMessage is associated with the user role
user_message = HumanMessage(content="Do you think Kraft Dinner constitues fine dining?")

# The AIMessage is associated with the assistant role
assistant_message = AIMessage(content="Egads! No, it most certainly does not!")

second_user_message = HumanMessage(content="What about Red Lobster, surely that is fine dining!")

# create the list of prompts
list_of_prompts = [
    system_message,
    user_message,
    assistant_message,
    second_user_message
]

# we can just call our chat_model on the list of prompts!
chat_model(list_of_prompts)

from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate
)

# we can signify variables we want access to by wrapping them in {}
system_prompt_template = "You are an expert in {SUBJECT}, and you're currently feeling {MOOD}"
system_prompt_template = SystemMessagePromptTemplate.from_template(system_prompt_template)

user_prompt_template = "{CONTENT}"
user_prompt_template = HumanMessagePromptTemplate.from_template(user_prompt_template)

# put them together into a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_template, user_prompt_template])

formatted_chat_prompt = chat_prompt.format_prompt(SUBJECT="cheeses", MOOD="quite tired", CONTENT="Hi, what are the finest cheeses?").to_messages()

disp_markdown(chat_model(formatted_chat_prompt).content)

from langchain.chains import LLMChain

chain = LLMChain(llm=chat_model, prompt=chat_prompt)

disp_markdown(chain.run(SUBJECT="classic cars", MOOD="angry", CONTENT="Is the 67 Chevrolet Impala a good vehicle?"))

!wget https://erki.lap.ee/failid/raamatud/guide1.txt

with open("guide1.txt") as f:
    hitchhikersguide = f.read()

from langchain.text_splitter import CharacterTextSplitter

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n")
texts = text_splitter.split_text(hitchhikersguide)

from langchain.embeddings.openai import OpenAIEmbeddings

os.environ["OPENAI_API_KEY"] = openai.api_key

embeddings = OpenAIEmbeddings()

# !pip install chromadb==0.3.22 tiktoken -q

# !pip install chromadb -U

!pip install pydantic -q
import chromadb

from langchain.vectorstores.chroma import Chroma
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()

query = "What makes towels important?"
docs = docsearch.get_relevant_documents(query)

docs[0]

from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI

chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
query = "What makes towels important?"
chain.run(input_documents=docs, question=query)

"""# Assignment 2

"""

!git clone https://github.com/TheMITTech/shakespeare

from glob import glob

files = glob("./shakespeare/**/*.html")

import shutil
import os

os.mkdir('./data')
destination_folder = './data/'

for html_file in files:
  shutil.move(html_file, destination_folder + html_file.split("/")[-1])

!pip install beautifulsoup4 -q

from langchain.document_loaders import BSHTMLLoader, DirectoryLoader

bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader)

data = bshtml_dir_loader.load()

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 1000,
    chunk_overlap  = 20,
    length_function = len,
)

documents = text_splitter.split_documents(data)

persist_directory = "vector_db"

vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory)

vectordb.persist()
vectordb = None

vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings)

llm = ChatOpenAI(temperature=0, model="gpt-4")

doc_retriever = vectordb.as_retriever()

from langchain.chains import RetrievalQA

shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)

shakespeare_qa.run("Who is Hamlet'?")

!pip install google-search-results -q

os.environ["SERPAPI_API_KEY"] = "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"

from langchain.utilities import SerpAPIWrapper

search = SerpAPIWrapper()

from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.tools import BaseTool
from langchain.llms import OpenAI
from langchain import LLMMathChain, SerpAPIWrapper

tools = [
    Tool(
        name = "Shakespeare QA System",
        func=shakespeare_qa.run,
        description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question."
    ),
    Tool(
        name = "SERP API Search",
        func=search.run,
        description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question."
    ),
]

agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

agent.run("What is Hamlet and more importantly who is hamlet?")

from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory

memory = ConversationBufferMemory(memory_key="chat_history")
readonlymemory = ReadOnlySharedMemory(memory=memory)

shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever, memory=readonlymemory)

tools = [
    Tool(
        name = "Shakespeare QA System",
        func=shakespeare_qa.run,
        description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question."
    ),
    Tool(
        name = "SERP API Search",
        func=search.run,
        description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question."
    ),
]

from langchain.agents import ZeroShotAgent, Tool, AgentExecutor

prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"

{chat_history}
Question: {input}
{agent_scratchpad}"""

prompt = ZeroShotAgent.create_prompt(
    tools,
    prefix=prefix,
    suffix=suffix,
    input_variables=["input", "chat_history", "agent_scratchpad"]
)

from langchain import OpenAI, LLMChain, PromptTemplate

llm_chain = LLMChain(llm=llm, prompt=prompt)

agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)

agent_chain.run(input="Who is Hamlet and What is Hamlet?")

agent_chain.run(input="What age was he in the play?")

agent_chain.run(input="Did he live through the play?")

agent_chain.run(input="What age did you think he was if you approximate without directly reading it from the play? You make the inference on his acts and ages of people in his life")

!pip install gradio

import gradio as gr

def the_app(text):
  return agent_chain.run(input=text)

x=the_app('who is gertrude?')

x

iface = gr.Interface(fn= the_app, inputs= "text", outputs="text",title="Shakespearean")

iface.launch()

7688iu78u87u78i