File size: 4,841 Bytes
ec0dbf0 16f9a51 ec0dbf0 26ae524 ec0dbf0 16f9a51 b99b09d 16f9a51 8a91ef2 0ce6512 16f9a51 0ce6512 16f9a51 8a91ef2 26ae524 16f9a51 26ae524 16f9a51 26ae524 16f9a51 ec0dbf0 16f9a51 ec0dbf0 16f9a51 ec0dbf0 16f9a51 ec0dbf0 58f5984 16f9a51 58f5984 0bee58f ec0dbf0 16f9a51 ee7d7d6 ec0dbf0 4e7b811 7c01b96 ec0dbf0 7c01b96 4e7b811 7c01b96 4e7b811 ec0dbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image, ImageEnhance
def apply_filter(image, filter_type, intensity):
# ๊ฐ๋๋ฅผ 0.0์์ 1.0 ์ฌ์ด๋ก ์ ๊ทํ
normalized_intensity = intensity / 100.0
if filter_type == "Grayscale":
return convert_to_grayscale(image)
elif filter_type == "Soft Glow":
# ๊ธฐ๋ณธ 10% ๊ฐ๋์์ ์์ํ์ฌ ์ต๋ 100% ๊ฐ๋๊น์ง ์กฐ์
base_intensity = 0.1
adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity))
gaussian = cv2.GaussianBlur(image, (15, 15), 0)
soft_glow = cv2.addWeighted(image, 1 - adjusted_intensity, gaussian, adjusted_intensity, 0)
return soft_glow
elif filter_type == "Portrait Enhancer":
# ๊ธฐ๋ณธ 50% ๊ฐ๋์์ ์์ํ์ฌ ์ต๋ 100% ๊ฐ๋๊น์ง ์กฐ์
base_intensity = 0.5
adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity))
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
enhancer = ImageEnhance.Sharpness(image_pil)
image_pil = enhancer.enhance(1 + 0.1 * adjusted_intensity)
enhancer = ImageEnhance.Color(image_pil)
image_pil = enhancer.enhance(1 + 0.1 * adjusted_intensity)
enhanced_image = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
return enhanced_image
elif filter_type == "Warm Tone":
increase_red = np.array([[1.0 + 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 - 0.2 * normalized_intensity]])
warm_image = cv2.transform(image, increase_red)
return warm_image
elif filter_type == "Cold Tone":
increase_blue = np.array([[1.0 - 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 + 0.2 * normalized_intensity]])
cold_image = cv2.transform(image, increase_blue)
return cold_image
elif filter_type == "High-Key":
high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.2 * normalized_intensity, beta=30)
return high_key
elif filter_type == "Low-Key":
low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.3 * normalized_intensity, beta=-30)
return low_key
elif filter_type == "Haze":
haze = cv2.addWeighted(image, 1.0 - 0.3 * normalized_intensity, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0)
return haze
else:
return image
def convert_to_grayscale(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
def convert_and_save(image, filter_type, intensity):
filtered_image = apply_filter(image, filter_type, intensity)
output_path = "output.jpg"
cv2.imwrite(output_path, filtered_image)
return filtered_image, output_path
def get_filter_description(filter_type):
descriptions = {
"Grayscale": "์ด๋ฏธ์ง๋ฅผ ํ๋ฐฑ์ผ๋ก ๋ณํํฉ๋๋ค.",
"Soft Glow": "๋ถ๋๋ฌ์ด ๋น์ ์ถ๊ฐํ์ฌ ์ด๋ฏธ์ง๋ฅผ ์์ํ๊ฒ ๋ง๋ญ๋๋ค.",
"Portrait Enhancer": "ํผ๋ถ ํค์ ๊ท ์ผํ๊ฒ ํ๊ณ ์ ๋ช
๋๋ฅผ ์กฐ์ ํ์ฌ ์ธ๋ฌผ์ ๋์ฑ ๋๋ณด์ด๊ฒ ๋ง๋ญ๋๋ค.",
"Warm Tone": "๋ฐ๋ปํ ์์กฐ๋ฅผ ์ถ๊ฐํ์ฌ ์ด๋ฏธ์ง์ ์จ๊ธฐ๋ฅผ ๋ํฉ๋๋ค.",
"Cold Tone": "์ฐจ๊ฐ์ด ์์กฐ๋ฅผ ์ถ๊ฐํ์ฌ ์ด๋ฏธ์ง์ ์์ํจ์ ๋ํฉ๋๋ค.",
"High-Key": "๋ฐ๊ณ ํ์ฌํ ์ด๋ฏธ์ง๋ฅผ ๋ง๋ค์ด๋
๋๋ค.",
"Low-Key": "์ด๋์ด ํค์ ๊ฐ์กฐํ์ฌ ๋ถ์๊ธฐ ์๋ ์ด๋ฏธ์ง๋ฅผ ๋ง๋ญ๋๋ค.",
"Haze": "๋ถ๋๋ฝ๊ณ ํ๋ฆฟํ ํจ๊ณผ๋ฅผ ์ถ๊ฐํ์ฌ ๋ชฝํ์ ์ธ ์ด๋ฏธ์ง๋ฅผ ๋ง๋ญ๋๋ค."
}
return descriptions.get(filter_type, "")
with gr.Blocks() as iface:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="์ด๋ฏธ์ง ์
๋ก๋")
filter_input = gr.Radio(
["Grayscale", "Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"],
label="ํํฐ ์ ํ",
value="Soft Glow"
)
intensity_slider = gr.Slider(1, 100, value=50, label="ํํฐ ๊ฐ๋")
description_output = gr.Markdown(get_filter_description("Soft Glow"))
with gr.Column():
output_image = gr.Image(type="pil", label="๊ฒฐ๊ณผ ์ด๋ฏธ์ง")
filter_input.change(fn=lambda filter_type: get_filter_description(filter_type), inputs=filter_input, outputs=description_output)
process_button = gr.Button("ํํฐ ์ ์ฉ")
process_button.click(fn=convert_and_save, inputs=[image_input, filter_input, intensity_slider], outputs=output_image)
iface.launch()
|