File size: 3,580 Bytes
ec0dbf0 16f9a51 ec0dbf0 26ae524 ec0dbf0 16f9a51 b99b09d 16f9a51 8a91ef2 0ce6512 16f9a51 0ce6512 16f9a51 8a91ef2 26ae524 16f9a51 26ae524 16f9a51 26ae524 16f9a51 ec0dbf0 16f9a51 ec0dbf0 16f9a51 ec0dbf0 16f9a51 ec0dbf0 58f5984 16f9a51 58f5984 0bee58f ec0dbf0 16f9a51 ee7d7d6 ec0dbf0 ee7d7d6 16f9a51 58f5984 16f9a51 58f5984 0bee58f 841fb88 ee7d7d6 ec0dbf0 ee7d7d6 0bee58f ec0dbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image, ImageEnhance
def apply_filter(image, filter_type, intensity):
# κ°λλ₯Ό 0.0μμ 1.0 μ¬μ΄λ‘ μ κ·ν
normalized_intensity = intensity / 100.0
if filter_type == "Grayscale":
return convert_to_grayscale(image)
elif filter_type == "Soft Glow":
# κΈ°λ³Έ 10% κ°λμμ μμνμ¬ μ΅λ 100% κ°λκΉμ§ μ‘°μ
base_intensity = 0.1
adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity))
gaussian = cv2.GaussianBlur(image, (15, 15), 0)
soft_glow = cv2.addWeighted(image, 1 - adjusted_intensity, gaussian, adjusted_intensity, 0)
return soft_glow
elif filter_type == "Portrait Enhancer":
# κΈ°λ³Έ 50% κ°λμμ μμνμ¬ μ΅λ 100% κ°λκΉμ§ μ‘°μ
base_intensity = 0.5
adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity))
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
enhancer = ImageEnhance.Sharpness(image_pil)
image_pil = enhancer.enhance(1 + 0.1 * adjusted_intensity)
enhancer = ImageEnhance.Color(image_pil)
image_pil = enhancer.enhance(1 + 0.1 * adjusted_intensity)
enhanced_image = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
return enhanced_image
elif filter_type == "Warm Tone":
increase_red = np.array([[1.0 + 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 - 0.2 * normalized_intensity]])
warm_image = cv2.transform(image, increase_red)
return warm_image
elif filter_type == "Cold Tone":
increase_blue = np.array([[1.0 - 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 + 0.2 * normalized_intensity]])
cold_image = cv2.transform(image, increase_blue)
return cold_image
elif filter_type == "High-Key":
high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.2 * normalized_intensity, beta=30)
return high_key
elif filter_type == "Low-Key":
low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.3 * normalized_intensity, beta=-30)
return low_key
elif filter_type == "Haze":
haze = cv2.addWeighted(image, 1.0 - 0.3 * normalized_intensity, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0)
return haze
else:
return image
def convert_to_grayscale(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
def convert_and_save(image, filter_type, intensity):
filtered_image = apply_filter(image, filter_type, intensity)
output_path = "output.jpg"
cv2.imwrite(output_path, filtered_image)
return filtered_image, output_path
iface = gr.Interface(
fn=convert_and_save,
inputs=[
"image",
gr.Radio(
["Grayscale", "Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"],
label="νν° μ ν"
),
gr.Slider(minimum=1, maximum=100, value=50, label="νν° κ°λ")
],
outputs=["image", "file"],
title="μ΄λ―Έμ§ νν° λ° νλ°± λ³νκΈ°",
description="μ΄λ―Έμ§λ₯Ό μ
λ‘λνκ³ νν°μ κ°λλ₯Ό μ ννλ©΄, λ³νλ μ΄λ―Έμ§λ₯Ό JPG νμΌλ‘ λ€μ΄λ‘λν μ μμ΅λλ€."
)
iface.launch()
|