Kims12's picture
Update app.py
8a91ef2 verified
raw
history blame
3.58 kB
import gradio as gr
import cv2
import numpy as np
from PIL import Image, ImageEnhance
def apply_filter(image, filter_type, intensity):
# 강도λ₯Ό 0.0μ—μ„œ 1.0 μ‚¬μ΄λ‘œ μ •κ·œν™”
normalized_intensity = intensity / 100.0
if filter_type == "Grayscale":
return convert_to_grayscale(image)
elif filter_type == "Soft Glow":
# κΈ°λ³Έ 10% κ°•λ„μ—μ„œ μ‹œμž‘ν•˜μ—¬ μ΅œλŒ€ 100% κ°•λ„κΉŒμ§€ 쑰절
base_intensity = 0.1
adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity))
gaussian = cv2.GaussianBlur(image, (15, 15), 0)
soft_glow = cv2.addWeighted(image, 1 - adjusted_intensity, gaussian, adjusted_intensity, 0)
return soft_glow
elif filter_type == "Portrait Enhancer":
# κΈ°λ³Έ 50% κ°•λ„μ—μ„œ μ‹œμž‘ν•˜μ—¬ μ΅œλŒ€ 100% κ°•λ„κΉŒμ§€ 쑰절
base_intensity = 0.5
adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity))
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
enhancer = ImageEnhance.Sharpness(image_pil)
image_pil = enhancer.enhance(1 + 0.1 * adjusted_intensity)
enhancer = ImageEnhance.Color(image_pil)
image_pil = enhancer.enhance(1 + 0.1 * adjusted_intensity)
enhanced_image = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
return enhanced_image
elif filter_type == "Warm Tone":
increase_red = np.array([[1.0 + 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 - 0.2 * normalized_intensity]])
warm_image = cv2.transform(image, increase_red)
return warm_image
elif filter_type == "Cold Tone":
increase_blue = np.array([[1.0 - 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 + 0.2 * normalized_intensity]])
cold_image = cv2.transform(image, increase_blue)
return cold_image
elif filter_type == "High-Key":
high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.2 * normalized_intensity, beta=30)
return high_key
elif filter_type == "Low-Key":
low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.3 * normalized_intensity, beta=-30)
return low_key
elif filter_type == "Haze":
haze = cv2.addWeighted(image, 1.0 - 0.3 * normalized_intensity, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0)
return haze
else:
return image
def convert_to_grayscale(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
def convert_and_save(image, filter_type, intensity):
filtered_image = apply_filter(image, filter_type, intensity)
output_path = "output.jpg"
cv2.imwrite(output_path, filtered_image)
return filtered_image, output_path
iface = gr.Interface(
fn=convert_and_save,
inputs=[
"image",
gr.Radio(
["Grayscale", "Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"],
label="ν•„ν„° 선택"
),
gr.Slider(minimum=1, maximum=100, value=50, label="ν•„ν„° 강도")
],
outputs=["image", "file"],
title="이미지 ν•„ν„° 및 흑백 λ³€ν™˜κΈ°",
description="이미지λ₯Ό μ—…λ‘œλ“œν•˜κ³  필터와 강도λ₯Ό μ„ νƒν•˜λ©΄, λ³€ν™˜λœ 이미지λ₯Ό JPG 파일둜 λ‹€μš΄λ‘œλ“œν•  수 μžˆμŠ΅λ‹ˆλ‹€."
)
iface.launch()