Spaces:
Runtime error
Runtime error
This PR upgrades this space to FLUX.1
#1
by
Fabrice-TIERCELIN
- opened
- README.md +5 -4
- app.py +122 -36
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π’
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
-
sdk:
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: openrail
|
|
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: FLUX.1 [merged]
|
3 |
emoji: π’
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.41.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: openrail
|
11 |
+
suggested_hardware: cpu-basic
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,36 +1,122 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
)
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
+
|
9 |
+
dtype = torch.bfloat16
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
|
13 |
+
|
14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 2048
|
16 |
+
|
17 |
+
|
18 |
+
@spaces.GPU()
|
19 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, output_format="png", progress=gr.Progress(track_tqdm=True)):
|
20 |
+
if randomize_seed:
|
21 |
+
seed = random.randint(0, MAX_SEED)
|
22 |
+
generator = torch.Generator().manual_seed(seed)
|
23 |
+
image = pipe(
|
24 |
+
prompt = prompt,
|
25 |
+
width = width,
|
26 |
+
height = height,
|
27 |
+
num_inference_steps = num_inference_steps,
|
28 |
+
generator = generator,
|
29 |
+
guidance_scale=guidance_scale
|
30 |
+
).images[0]
|
31 |
+
return gr.update(format = output_format, value = image), seed
|
32 |
+
|
33 |
+
examples = [
|
34 |
+
"a tiny astronaut hatching from an egg on the moon",
|
35 |
+
"a cat holding a sign that says hello world",
|
36 |
+
"an anime illustration of a wiener schnitzel",
|
37 |
+
]
|
38 |
+
|
39 |
+
with gr.Blocks(delete_cache=(4000, 4000)) as demo:
|
40 |
+
|
41 |
+
with gr.Column(elem_id="col-container"):
|
42 |
+
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged)
|
43 |
+
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/)
|
44 |
+
""")
|
45 |
+
|
46 |
+
prompt = gr.Text(
|
47 |
+
label = "Prompt",
|
48 |
+
show_label = False,
|
49 |
+
lines = 2,
|
50 |
+
autofocus = True,
|
51 |
+
placeholder = "Enter your prompt",
|
52 |
+
container = False
|
53 |
+
)
|
54 |
+
|
55 |
+
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
|
56 |
+
|
57 |
+
with gr.Accordion("Advanced Settings", open=False):
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
|
61 |
+
width = gr.Slider(
|
62 |
+
label="Width",
|
63 |
+
minimum=256,
|
64 |
+
maximum=MAX_IMAGE_SIZE,
|
65 |
+
step=32,
|
66 |
+
value=1024,
|
67 |
+
)
|
68 |
+
|
69 |
+
height = gr.Slider(
|
70 |
+
label="Height",
|
71 |
+
minimum=256,
|
72 |
+
maximum=MAX_IMAGE_SIZE,
|
73 |
+
step=32,
|
74 |
+
value=1024,
|
75 |
+
)
|
76 |
+
|
77 |
+
num_inference_steps = gr.Slider(
|
78 |
+
label="Number of inference steps",
|
79 |
+
minimum=1,
|
80 |
+
maximum=50,
|
81 |
+
step=1,
|
82 |
+
value=4,
|
83 |
+
)
|
84 |
+
|
85 |
+
guidance_scale = gr.Slider(
|
86 |
+
label="Guidance Scale",
|
87 |
+
minimum=1,
|
88 |
+
maximum=15,
|
89 |
+
step=0.1,
|
90 |
+
value=3.5,
|
91 |
+
)
|
92 |
+
|
93 |
+
seed = gr.Slider(
|
94 |
+
label="Seed",
|
95 |
+
minimum=0,
|
96 |
+
maximum=MAX_SEED,
|
97 |
+
step=1,
|
98 |
+
value=0,
|
99 |
+
)
|
100 |
+
|
101 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
102 |
+
|
103 |
+
run_button = gr.Button(value = "π Generate", variant="primary")
|
104 |
+
|
105 |
+
result = gr.Image(label="Result", show_label=False, format="png")
|
106 |
+
|
107 |
+
gr.Examples(
|
108 |
+
examples = examples,
|
109 |
+
fn = infer,
|
110 |
+
inputs = [prompt],
|
111 |
+
outputs = [result, seed],
|
112 |
+
cache_examples="lazy"
|
113 |
+
)
|
114 |
+
|
115 |
+
gr.on(
|
116 |
+
triggers=[run_button.click, prompt.submit],
|
117 |
+
fn = infer,
|
118 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format],
|
119 |
+
outputs = [result, seed]
|
120 |
+
)
|
121 |
+
|
122 |
+
demo.queue(default_concurrency_limit=2).launch(show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
git+https://github.com/huggingface/diffusers.git
|
3 |
+
torch
|
4 |
+
transformers==4.42.4
|
5 |
+
xformers
|
6 |
+
sentencepiece
|