Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,245 Bytes
d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 8004741 d5f497d d4fa96f 093995d d4fa96f fbec80d d4fa96f d5f497d 093995d 51eaf53 093995d d5f497d d890da3 d5f497d f92dc60 d5f497d d890da3 d5f497d 093995d d5f497d 093995d d5f497d d890da3 cbcd3a1 d5f497d 093995d d5f497d 093995d d5f497d 8004741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
pipe = StableDiffusionXLInpaintPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
pipe.to(device)
pipe.enable_attention_slicing()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
image,
# mask_image,
negative_prompt = "",
seed = 0,
randomize_seed = False,
width = 1024,
height = 1024,
guidance_scale = 5.0,
num_inference_steps = 25
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
result = pipe(
prompt = prompt,
image = image,
# mask_image = mask_image,
height=height,
width=width,
guidance_scale = guidance_scale,
generator= generator,
num_inference_steps= num_inference_steps,
negative_prompt = negative_prompt,
num_images_per_prompt = 1,
strength = 0.999
).images[0]
return result
examples = [
]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as Kolors:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.Image(source='upload', tool='sketch', type="pil", label="Image to Inpaint")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量'
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
run_button = gr.Button("Run")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
# with gr.Row():
# gr.Examples(
# fn = infer,
# examples = examples,
# inputs = [prompt, ip_adapter_image, ip_adapter_scale],
# outputs = [result]
# )
run_button.click(
fn = infer,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
Kolors.queue().launch(debug=True)
|