File size: 5,245 Bytes
d5f497d
 
 
 
093995d
d5f497d
 
 
 
 
 
 
093995d
 
d5f497d
 
 
093995d
d5f497d
093995d
d5f497d
 
 
093995d
 
 
d5f497d
093995d
 
d5f497d
 
8004741
d5f497d
 
d4fa96f
093995d
 
d4fa96f
 
fbec80d
d4fa96f
 
 
 
 
d5f497d
 
 
 
093995d
 
 
51eaf53
093995d
 
 
 
 
 
 
 
 
 
 
d5f497d
 
 
 
 
 
 
d890da3
d5f497d
 
 
 
 
 
 
f92dc60
 
 
 
 
 
 
d5f497d
 
 
 
 
 
d890da3
d5f497d
 
093995d
d5f497d
 
 
 
 
093995d
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d890da3
cbcd3a1
d5f497d
 
 
 
093995d
 
 
 
 
 
 
d5f497d
 
 
093995d
d5f497d
 
 
8004741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

pipe = StableDiffusionXLInpaintPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler
)
    
pipe.to(device)
pipe.enable_attention_slicing()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(prompt, 
          image,
        #   mask_image,
          negative_prompt = "", 
          seed = 0, 
          randomize_seed = False, 
          width = 1024, 
          height = 1024, 
          guidance_scale = 5.0, 
          num_inference_steps = 25
          ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    result = pipe(
        prompt = prompt,
        image = image,
        # mask_image = mask_image,
        height=height,
        width=width,
        guidance_scale = guidance_scale,
        generator= generator,
        num_inference_steps= num_inference_steps,
        negative_prompt = negative_prompt,
        num_images_per_prompt = 1,
        strength = 0.999
    ).images[0]

    return result

examples = [
]

css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(source='upload', tool='sketch', type="pil", label="Image to Inpaint")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量'
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                    )
            with gr.Row():
                run_button = gr.Button("Run")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)
    
    # with gr.Row():
    #     gr.Examples(
    #             fn = infer,
    #             examples = examples,
    #             inputs = [prompt, ip_adapter_image, ip_adapter_scale],
    #             outputs = [result]
    #         )

    run_button.click(
        fn = infer,
        inputs = [prompt, image, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

Kolors.queue().launch(debug=True)