Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,333 Bytes
d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 093995d d5f497d 8004741 d5f497d d4fa96f 093995d 06436de d4fa96f fbec80d 6f4045a d4fa96f 7531872 15341ef d5f497d 1ae1c49 0e645ce 093995d 2990da4 093995d d5f497d 06436de 6f4045a 06436de 6f4045a d5f497d d890da3 d5f497d 0a3fff4 d5f497d f92dc60 d5f497d d890da3 d5f497d 0e645ce 0a3fff4 d5f497d 093995d d5f497d 6f4045a d5f497d d890da3 cbcd3a1 d5f497d 06436de d5f497d 7531872 d5f497d 8004741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
pipe = StableDiffusionXLInpaintPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
pipe.to(device)
pipe.enable_attention_slicing()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
image,
mask_image = None,
negative_prompt = "",
seed = 0,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 25
):
if not isinstance(image, dict):
image = dict({'background': image, 'layers': [mask_image]})
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
width, height = image['background'].size
width = (width // 8 + 1) * 8
height = (height // 8 + 1) * 8
result = pipe(
prompt = prompt,
image = image['background'],
mask_image = image['layers'][0],
height=height,
width=width,
guidance_scale = guidance_scale,
generator= generator,
num_inference_steps= num_inference_steps,
negative_prompt = negative_prompt,
num_images_per_prompt = 1,
strength = 0.999
).images[0]
return result
examples = [
["一只带着红色帽子的小猫咪,圆脸,大眼,极度可爱,高饱和度,立体,柔和的光线",
"image/1.png", "image/1_masked.png"],
["这是一幅令人垂涎欲滴的火锅画面,各种美味的食材在翻滚的锅中煮着,散发出的热气和香气令人陶醉。火红的辣椒和鲜艳的辣椒油熠熠生辉,具有诱人的招人入胜之色彩。锅内肉质细腻的薄切牛肉、爽口的豆腐皮、鲍汁浓郁的金针菇、爽脆的蔬菜,融合在一起,营造出五彩斑斓的视觉呈现",
"image/2.png", "image/2_masked.png"],
["穿着美少女战士的衣服,一件类似于水手服风格的衣服,包括一个白色紧身上衣,前胸搭配一个大大的红色蝴蝶结。衣服的领子部分呈蓝色,并且有白色条纹。她还穿着一条蓝色百褶裙,超高清,辛烷渲染,高级质感,32k,高分辨率,最好的质量,超级细节,景深",
"image/3.png", "image/3_masked.png"],
["穿着钢铁侠的衣服,高科技盔甲,主要颜色为红色和金色,并且有一些银色装饰。胸前有一个亮起的圆形反应堆装置,充满了未来科技感。超清晰,高质量,超逼真,高分辨率,最好的质量,超级细节,景深",
"image/4.png", "image/4_masked.png"],
]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 700px;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as Kolors:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.ImageEditor(label='Image', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#AAAAAA"], color_mode="fixed"))
mask_image = gr.Image(label='Mask_Example',type='pil', visible=False, value=None)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量'
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
run_button = gr.Button("Run")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
with gr.Row():
gr.Examples(
fn = infer,
examples = examples,
inputs = [prompt, image, mask_image],
outputs = [result]
)
run_button.click(
fn = infer,
inputs = [prompt, image, mask_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result]
)
Kolors.queue().launch(debug=True)
|