File size: 6,333 Bytes
d5f497d
 
 
 
093995d
d5f497d
 
 
 
 
 
 
093995d
 
d5f497d
 
 
093995d
d5f497d
093995d
d5f497d
 
 
093995d
 
 
d5f497d
093995d
 
d5f497d
 
8004741
d5f497d
 
d4fa96f
093995d
06436de
d4fa96f
 
fbec80d
6f4045a
d4fa96f
 
7531872
15341ef
d5f497d
 
 
1ae1c49
0e645ce
 
093995d
 
2990da4
 
093995d
 
 
 
 
 
 
 
 
 
 
d5f497d
 
06436de
 
6f4045a
06436de
 
6f4045a
 
 
d5f497d
 
 
 
 
d890da3
d5f497d
 
 
0a3fff4
d5f497d
 
 
f92dc60
 
 
 
 
 
 
d5f497d
 
 
 
 
 
d890da3
d5f497d
 
0e645ce
0a3fff4
d5f497d
 
 
 
093995d
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f4045a
d5f497d
 
 
 
 
 
 
 
d890da3
cbcd3a1
d5f497d
 
 
 
06436de
 
 
 
 
 
 
d5f497d
 
 
7531872
d5f497d
 
 
8004741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

pipe = StableDiffusionXLInpaintPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler
)
    
pipe.to(device)
pipe.enable_attention_slicing()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(prompt, 
          image,
          mask_image = None,
          negative_prompt = "", 
          seed = 0, 
          randomize_seed = False, 
          guidance_scale = 6.0, 
          num_inference_steps = 25
          ):
    if not isinstance(image, dict):
        image = dict({'background': image, 'layers': [mask_image]})
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    width, height = image['background'].size
    width = (width // 8 + 1) * 8
    height = (height // 8 + 1) * 8
    result = pipe(
        prompt = prompt,
        image = image['background'],
        mask_image = image['layers'][0],
        height=height,
        width=width,
        guidance_scale = guidance_scale,
        generator= generator,
        num_inference_steps= num_inference_steps,
        negative_prompt = negative_prompt,
        num_images_per_prompt = 1,
        strength = 0.999
    ).images[0]

    return result

examples = [
    ["一只带着红色帽子的小猫咪,圆脸,大眼,极度可爱,高饱和度,立体,柔和的光线", 
     "image/1.png", "image/1_masked.png"],
    ["这是一幅令人垂涎欲滴的火锅画面,各种美味的食材在翻滚的锅中煮着,散发出的热气和香气令人陶醉。火红的辣椒和鲜艳的辣椒油熠熠生辉,具有诱人的招人入胜之色彩。锅内肉质细腻的薄切牛肉、爽口的豆腐皮、鲍汁浓郁的金针菇、爽脆的蔬菜,融合在一起,营造出五彩斑斓的视觉呈现", 
     "image/2.png", "image/2_masked.png"],
    ["穿着美少女战士的衣服,一件类似于水手服风格的衣服,包括一个白色紧身上衣,前胸搭配一个大大的红色蝴蝶结。衣服的领子部分呈蓝色,并且有白色条纹。她还穿着一条蓝色百褶裙,超高清,辛烷渲染,高级质感,32k,高分辨率,最好的质量,超级细节,景深", 
     "image/3.png", "image/3_masked.png"],
    ["穿着钢铁侠的衣服,高科技盔甲,主要颜色为红色和金色,并且有一些银色装饰。胸前有一个亮起的圆形反应堆装置,充满了未来科技感。超清晰,高质量,超逼真,高分辨率,最好的质量,超级细节,景深", 
     "image/4.png", "image/4_masked.png"],
]

css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 700px;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.ImageEditor(label='Image', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#AAAAAA"], color_mode="fixed"))
                mask_image = gr.Image(label='Mask_Example',type='pil', visible=False, value=None)
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量'
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=6.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                    )
            with gr.Row():
                run_button = gr.Button("Run")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)
    
    with gr.Row():
        gr.Examples(
                fn = infer,
                examples = examples,
                inputs = [prompt, image, mask_image],
                outputs = [result]
            )

    run_button.click(
        fn = infer,
        inputs = [prompt, image, mask_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs = [result]
    )

Kolors.queue().launch(debug=True)