llava-4bit / app.py
merve's picture
merve HF staff
Added back parameters
08bcb47
raw
history blame
5.03 kB
from __future__ import annotations
import os
import string
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
DESCRIPTION = "# LLaVA 🌋"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
def extract_response_pairs(text):
pattern = re.compile(r'(USER:.*?)ASSISTANT:(.*?)(?:$|USER:)', re.DOTALL)
matches = pattern.findall(text)
pairs = [(user.strip(), assistant.strip()) for user, assistant in matches]
return pairs
def postprocess_output(output: str) -> str:
if output and output[-1] not in string.punctuation:
output += "."
return output
def chat(image, text, temperature, length_penalty,
repetition_penalty, max_length, min_length, num_beams, top_p,
history_chat):
prompt = " ".join(history_chat)
prompt = f"USER: <image>\n{text}\nASSISTANT:"
outputs = pipe(image, prompt=prompt,
generate_kwargs={"temperature":temperature,
"length_penalty":length_penalty,
"repetition_penalty":repetition_penalty,
"max_length":max_length,
"min_length":min_length,
"num_beams":num_beams,
"top_p":top_p})
output = postprocess_output(outputs[0]["generated_text"])
history_chat.append(output)
chat_val = extract_response_pairs(" ".join(history_chat))
return chat_val, history_chat
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown("**LLaVA, one of the greatest multimodal chat models is now available in transformers with 4-bit quantization! ⚡️ **")
gr.Markdown("**Try it in this demo 🤗 **")
chatbot = gr.Chatbot(label="Chat", show_label=False)
gr.Markdown("Input image and text and start chatting 👇")
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
history_chat = gr.State(value=[])
with gr.Row():
clear_chat_button = gr.Button("Clear")
chat_button = gr.Button("Submit", variant="primary")
with gr.Accordion(label="Advanced settings", open=False):
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=512,
step=1,
value=50,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=100,
step=1,
value=1,
)
top_p = gr.Slider(
label="Top P",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=0.9,
)
chat_output = [
chatbot,
history_chat
]
chat_button.click(fn=chat, inputs=[image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p,
history_chat],
outputs=chat_output,
api_name="Chat",
)
chat_inputs = [
image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p,
history_chat
]
text_input.submit(
fn=chat,
inputs=chat_inputs,
outputs=chat_output
).success(
fn=lambda: "",
outputs=chat_inputs,
queue=False,
api_name=False,
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()