pyannote-speaker-diarization / audio /audioanalyser_anglais.py
Ld75's picture
tdd + diarization
3ecd153
raw
history blame
820 Bytes
#deepneurones = pipeline("text2text-generation", model="google/flan-t5-small")
#deepneurones = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour. pipeline() telecharge dans un cache local le modele deeplearning
from transformers import pipeline # le framework de huggingface
deepneurones= pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") # il faut choisir un modele
#from pyannote.audio import Pipeline
#,use_auth_token="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")
#deepneuronesdiarizatin = Pipeline.from_pretrained("pyannote/speaker-diarization",use_auth_token="test")
class AudioAnalyserAnglais:
@classmethod
def stt(cls, file_content):
return deepneurones(file_content)