Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
"""Fujisaki_CPU.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1Damnr0Ha4zZAlKFvne9cu76uuElLNYus | |
李萌萌的电子骨灰盒 | |
---- | |
这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以在问题栏目填入内容,或者什么都不填,来观察李萌萌到底会说些什么。 | |
T4级别的GPU已经可以很胜任这个任务了。 | |
### 安装依赖 | |
""" | |
from modeling_chatglm import ChatGLMForConditionalGeneration | |
import torch | |
import sys | |
from transformers import AutoTokenizer, GenerationConfig | |
model = ChatGLMForConditionalGeneration.from_pretrained("THUDM/chatglm-6b").float() | |
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) | |
from peft import get_peft_model, LoraConfig, TaskType, PeftModel | |
peft_path = 'ljsabc/Fujisaki_GLM' # change it to your own | |
model = PeftModel.from_pretrained( | |
model, | |
peft_path, | |
torch_dtype=torch.float, | |
) | |
# dump a log to ensure everything works well | |
print(model.peft_config) | |
# We have to use full precision, as some tokens are >65535 | |
model.eval() | |
torch.set_default_tensor_type(torch.FloatTensor) | |
def evaluate(context, temperature, top_p, top_k): | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
#repetition_penalty=1.1, | |
num_beams=1, | |
do_sample=True, | |
) | |
with torch.no_grad(): | |
input_text = f"Context: {context}Answer: " | |
ids = tokenizer.encode(input_text) | |
input_ids = torch.LongTensor([ids]).to('cpu') | |
out = model.generate( | |
input_ids=input_ids, | |
max_length=160, | |
generation_config=generation_config | |
) | |
out_text = tokenizer.decode(out[0]).split("Answer: ")[1] | |
return out_text | |
def evaluate_stream(msg, history, temperature, top_p): | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
#repetition_penalty=1.1, | |
num_beams=1, | |
do_sample=True, | |
) | |
history.append([msg, None]) | |
context = "" | |
if len(history) > 4: | |
history.pop(0) | |
for j in range(len(history)): | |
history[j][0] = history[j][0].replace("<br>", "") | |
# concatenate context | |
for h in history[:-1]: | |
context += h[0] + "||" + h[1] + "||" | |
context += history[-1][0] | |
context = context.replace(r'<br>', '') | |
# TODO: Avoid the tokens are too long. | |
CUTOFF = 224 | |
while len(tokenizer.encode(context)) > CUTOFF: | |
# save 15 token size for the answer | |
context = context[15:] | |
h = [] | |
print("History:", history) | |
print("Context:", context) | |
for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature): | |
history[-1][1] = response | |
yield history, "" | |
#return response | |
import gradio as gr | |
title = """<h1 align="center">李萌萌(Alter Ego)</h1> | |
<h3 align='center'>这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以与她聊天,或者直接在文本框按下Enter,来观察李萌萌到底会说些什么。</h3> | |
<p align='center'>可能是因为数据的原因,相比于提问,陈述性的上下文更容易跑出更好的结果。</p>""" | |
footer = """<p align='center'>项目在<a href='https://github.com/ljsabc/Fujisaki' target='_blank'>GitHub</a>上托管,基于清华的<a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a>项目。</p> | |
<p align='center'><em>"I'm... a boy." --Chihiro Fujisaki</em></p>""" | |
with gr.Blocks() as demo: | |
gr.HTML(title) | |
state = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=2): | |
temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.8, label="Temperature", | |
info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。") | |
top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.975, label="Top-p", | |
info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。") | |
#code = gr.Textbox(label="temp_output", info="解码器输出") | |
#top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k", | |
# info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。") | |
with gr.Column(scale=3): | |
chatbot = gr.Chatbot(label="聊天框", info="") | |
msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?", | |
info="输入你的内容,按[Enter]发送。也可以什么都不填写生成随机数据。对话一般不能太长,否则就复读机了,建议清除数据。") | |
clear = gr.Button("清除聊天") | |
msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
gr.HTML(footer) | |
demo.queue() | |
demo.launch(debug=False) | |