Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,948 Bytes
4cc901a aca4c0c 4cc901a 0c67c24 4cc901a 6612f88 4cc901a f2b6361 4cc901a 1e3cd91 4cc901a 1e3cd91 4cc901a 323d2cd 4cc901a 1e3cd91 4cc901a 1e3cd91 4cc901a a7b8414 4cc901a 1e3cd91 4cc901a a7b8414 4cc901a a7b8414 4cc901a 1e3cd91 4cc901a f2b6361 4cc901a 1e3cd91 4cc901a a7b8414 4cc901a 3d298d2 4cc901a 779331d a7b8414 779331d 1e3cd91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import re
import time
from io import BytesIO
import uuid
from dataclasses import dataclass
from glob import iglob
import argparse
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image
import spaces
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from transformers import pipeline
from flux.sampling import denoise, get_schedule, prepare, unpack
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5)
from huggingface_hub import login
login(token=os.getenv('Token'))
import torch
device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
reserved_memory = torch.cuda.memory_reserved(device)
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
@dataclass
class SamplingOptions:
source_prompt: str
target_prompt: str
# prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
@torch.inference_mode()
def encode(init_image, torch_device, ae):
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
init_image = init_image.unsqueeze(0)
init_image = init_image.to(torch_device)
ae = ae.cuda()
with torch.no_grad():
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
return init_image
class FluxEditor:
def __init__(self, args):
self.args = args
self.device = torch.device(args.device)
self.offload = args.offload
self.name = args.name
self.is_schnell = args.name == "flux-schnell"
self.feature_path = 'feature'
self.output_dir = 'result'
self.add_sampling_metadata = True
if self.name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
# init all components
self.t5 = load_t5(self.device, max_length=256 if self.name == "flux-schnell" else 512)
self.clip = load_clip(self.device)
self.model = load_flow_model(self.name, device="cpu" if self.offload else self.device)
self.ae = load_ae(self.name, device="cpu" if self.offload else self.device)
self.t5.eval()
self.clip.eval()
self.ae.eval()
self.model.eval()
if self.offload:
self.model.cpu()
torch.cuda.empty_cache()
self.ae.encoder.to(self.device)
@torch.inference_mode()
@spaces.GPU(duration=150)
def edit(self, init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
torch.cuda.empty_cache()
seed = None
# if seed == -1:
# seed = None
shape = init_image.shape
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16
init_image = init_image[:new_h, :new_w, :]
width, height = init_image.shape[0], init_image.shape[1]
init_image = encode(init_image, self.device, self.ae)
print(init_image.shape)
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
source_prompt=source_prompt,
target_prompt=target_prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
t0 = time.perf_counter()
opts.seed = None
if self.offload:
self.ae = self.ae.cpu()
torch.cuda.empty_cache()
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
#############inverse#######################
info = {}
info['feature'] = {}
info['inject_step'] = inject_step
if not os.path.exists(self.feature_path):
os.mkdir(self.feature_path)
with torch.no_grad():
inp = prepare(self.t5, self.clip, init_image, prompt=opts.source_prompt)
inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
# offload TEs to CPU, load model to gpu
if self.offload:
self.t5, self.clip = self.t5.cpu(), self.clip.cpu()
torch.cuda.empty_cache()
self.model = self.model.to(self.device)
# inversion initial noise
with torch.no_grad():
z, info = denoise(self.model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
inp_target["img"] = z
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))
# denoise initial noise
x, _ = denoise(self.model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
# offload model, load autoencoder to gpu
if self.offload:
self.model.cpu()
torch.cuda.empty_cache()
self.ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.width, opts.height)
output_name = os.path.join(self.output_dir, "img_{idx}.jpg")
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
ae = ae.cuda()
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
x = self.ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
fn = output_name.format(idx=idx)
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = self.name
if self.add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = source_prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
print("End Edit")
return img
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
editor = FluxEditor(args)
is_schnell = model_name == "flux-schnell"
with gr.Blocks() as demo:
gr.Markdown(f"# RF-Edit Demo (FLUX for image editing)")
with gr.Row():
with gr.Column():
# source_prompt = gr.Textbox(label="Source Prompt", value="")
# target_prompt = gr.Textbox(label="Target Prompt", value="")
source_prompt = gr.Text(
label="Source Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your source prompt",
container=False,
value=""
)
target_prompt = gr.Text(
label="Target Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your target prompt",
container=False,
value=""
)
init_image = gr.Image(label="Input Image", visible=True)
generate_btn = gr.Button("Generate")
with gr.Column():
with gr.Accordion("Advanced Options", open=True):
num_steps = gr.Slider(1, 30, 25, step=1, label="Number of steps")
inject_step = gr.Slider(1, 15, 5, step=1, label="Number of inject steps")
guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell)
# seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False)
# add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False)
output_image = gr.Image(label="Generated Image")
generate_btn.click(
fn=editor.edit,
inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
outputs=[output_image]
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Flux")
parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
parser.add_argument("--port", type=int, default=41035)
args = parser.parse_args()
demo = create_demo(args.name, args.device)
demo.launch() |