File size: 9,449 Bytes
4cc901a
 
 
 
 
 
 
 
 
 
 
aca4c0c
4cc901a
 
 
 
 
 
 
 
 
0c67c24
 
4cc901a
6612f88
 
 
4cc901a
 
 
 
 
 
 
 
 
 
 
6fb545f
c633291
6fb545f
 
 
 
 
 
 
1b839c2
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb545f
 
 
 
 
 
 
4cc901a
6fb545f
4cc901a
6fb545f
 
4cc901a
6fb545f
4cc901a
6fb545f
748300c
1b839c2
 
 
 
 
 
4cc901a
6fb545f
4cc901a
6fb545f
 
4cc901a
 
 
 
 
 
 
 
6fb545f
 
4cc901a
6fb545f
 
1e3cd91
6fb545f
4cc901a
6fb545f
 
 
 
748300c
6fb545f
 
 
 
1e3cd91
1b839c2
6fb545f
 
4cc901a
6fb545f
4cc901a
6fb545f
4cc901a
6fb545f
 
4cc901a
6fb545f
 
1e3cd91
6fb545f
 
 
 
 
 
 
 
4cc901a
6fb545f
b18d10b
 
6fb545f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30934f
6fb545f
 
 
4cc901a
 
 
a7b8414
4cc901a
062e9dc
6f80cb0
 
4cc901a
062e9dc
6f80cb0
 
 
31c7137
 
 
 
 
6f80cb0
062e9dc
 
 
 
 
 
 
 
6f80cb0
 
062e9dc
4cc901a
 
2e0ad47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc901a
 
 
 
 
 
 
6f80cb0
 
4cc901a
 
 
 
 
 
 
6fb545f
4cc901a
 
 
062e9dc
4cc901a
 
 
 
 
6fb545f
 
 
 
 
 
 
779331d
6fb545f
 
779331d
6fb545f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import re
import time
from io import BytesIO
import uuid
from dataclasses import dataclass
from glob import iglob
import argparse
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image
import spaces

import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from transformers import pipeline

from flux.sampling import denoise, get_schedule, prepare, unpack
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5)
from huggingface_hub import login
login(token=os.getenv('Token'))

import torch


@dataclass
class SamplingOptions:
    source_prompt: str
    target_prompt: str
    # prompt: str
    width: int
    height: int
    num_steps: int
    guidance: float
    seed: int | None

@torch.inference_mode()
def encode(init_image, torch_device):
    init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
    init_image = init_image.unsqueeze(0) 
    init_image = init_image.to(torch_device)
    with torch.no_grad():
        init_image = ae.encode(init_image.to()).to(torch.bfloat16)
    return init_image


device = "cuda" if torch.cuda.is_available() else "cpu"
name = 'flux-dev'
ae = load_ae(name, device)
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(device)
model = load_flow_model(name, device=device)
offload = False
name = "flux-dev"
is_schnell = False
feature_path = 'feature'
output_dir = 'result'
add_sampling_metadata = True

@spaces.GPU(duration=120)
@torch.inference_mode()
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):

    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch.cuda.empty_cache()
    seed = None
        
    shape = init_image.shape

    new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
    new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16

    init_image = init_image[:new_h, :new_w, :]

    width, height = init_image.shape[0], init_image.shape[1]


    init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
    init_image = init_image.unsqueeze(0) 
    init_image = init_image.to(device)
    with torch.no_grad():
        init_image = ae.encode(init_image.to()).to(torch.bfloat16)

    print(init_image.shape)

    rng = torch.Generator(device="cpu")
    opts = SamplingOptions(
            source_prompt=source_prompt,
            target_prompt=target_prompt,
            width=width,
            height=height,
            num_steps=num_steps,
            guidance=guidance,
            seed=seed,
        )
    if opts.seed is None:
        opts.seed = torch.Generator(device="cpu").seed()
        
    print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
    t0 = time.perf_counter()

    opts.seed = None

    #############inverse#######################
    info = {}
    info['feature'] = {}
    info['inject_step'] = inject_step

    with torch.no_grad():
        inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
        inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
    timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))

    # inversion initial noise
    with torch.no_grad():
        z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
        
    inp_target["img"] = z

    timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell"))

    # denoise initial noise
    x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)

    # decode latents to pixel space
    x = unpack(x.float(), opts.width, opts.height)

    output_name = os.path.join(output_dir, "img_{idx}.jpg")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        idx = 0
    else:
        fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
        if len(fns) > 0:
            idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
        else:
            idx = 0
            
    device = torch.device("cuda")
    with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
        x = ae.decode(x)

    if torch.cuda.is_available():
        torch.cuda.synchronize()
    t1 = time.perf_counter()

    fn = output_name.format(idx=idx)
    print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
    # bring into PIL format and save
    x = x.clamp(-1, 1)
    x = embed_watermark(x.float())
    x = rearrange(x[0], "c h w -> h w c")

    img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
    exif_data = Image.Exif()
    exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
    exif_data[ExifTags.Base.Make] = "Black Forest Labs"
    exif_data[ExifTags.Base.Model] = name
    if add_sampling_metadata:
        exif_data[ExifTags.Base.ImageDescription] = source_prompt
    # img.save(fn, exif=exif_data, quality=95, subsampling=0)

    print("End Edit")
    return img



def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
    is_schnell = model_name == "flux-schnell"
    title = r"""
        <h1 align="center">Taming Rectified Flow for Inversion and Editing</h1>
        """
        
    description = r"""
        <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/wangjiangshan0725/RF-Solver-Edit' target='_blank'><b>Taming Rectified Flow for Inversion and Editing</b></a>.<br>
    
        ❗️❗️❗️[<b>Important</b>] Editing steps:<br>
        1️⃣ Upload images you want to edit (The resolution is expected be less than 1360*768, or the memory of GPU may be not enough.) <br>
        2️⃣ Enter the source prompt, which describes the content of the image you unload. The source prompt is not mandatory; you can also leave it to null. <br>
        3️⃣ Enter the target prompt which describes the content of the expected images after editing. <br>
        4️⃣ Click the <b>Generate</b> button to start editing. <br>
        5️⃣ We suggest to adjust the value of **feature sharing steps** for better results.<br>
        """
    article = r"""
    If our work is helpful, please help to ⭐ the <a href='https://github.com/wangjiangshan0725/RF-Solver-Edit' target='_blank'>Github Repo</a>. Thanks! 
    [![GitHub Stars](https://img.shields.io/github/stars/wangjiangshan0725/RF-Solver-Edit?style=social)](https://github.com/wangjiangshan0725/RF-Solver-Edit)
    ---
    """
    with gr.Blocks() as demo:
        # gr.Markdown(f"# Official Demo for Taming Rectified Flow for Inversion and Editing")
        
        gr.Markdown(title)
        gr.Markdown(description)
        
        with gr.Row():
            with gr.Column():
                source_prompt = gr.Textbox(label="Source Prompt", value="")
                target_prompt = gr.Textbox(label="Target Prompt", value="")
                # source_prompt = gr.Text(
                #     label="Source Prompt",
                #     show_label=False,
                #     max_lines=1,
                #     placeholder="Enter your source prompt",
                #     container=False,
                #     value="" 
                # )
                # target_prompt = gr.Text(
                #     label="Target Prompt",
                #     show_label=False,
                #     max_lines=1,
                #     placeholder="Enter your target prompt",
                #     container=False,
                #     value="" 
                # )
                init_image = gr.Image(label="Input Image", visible=True)
                
                
                generate_btn = gr.Button("Generate")
            
            with gr.Column():
                with gr.Accordion("Advanced Options", open=True):
                    num_steps = gr.Slider(1, 30, 25, step=1, label="Total timesteps")
                    inject_step = gr.Slider(1, 15, 3, step=1, label="Feature sharing steps")
                    guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell)
                    # seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False)
                    # add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False)
                
                output_image = gr.Image(label="Generated Image")

        generate_btn.click(
            fn=edit,
            inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
            outputs=[output_image]
        )
        gr.Markdown(article)


    return demo


# if __name__ == "__main__":
#     import argparse
#     parser = argparse.ArgumentParser(description="Flux")
#     parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
#     parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
#     parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
#     parser.add_argument("--share", action="store_true", help="Create a public link to your demo")

#     parser.add_argument("--port", type=int, default=41035)
#     args = parser.parse_args()

demo = create_demo("flux-dev", "cuda")
demo.launch()