File size: 11,190 Bytes
4cc901a
 
 
 
 
 
 
 
 
 
 
aca4c0c
4cc901a
 
 
 
 
 
 
 
 
0c67c24
 
4cc901a
6612f88
 
 
 
 
 
 
 
 
 
 
 
 
4cc901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b6361
4cc901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3cd91
 
4cc901a
 
 
 
1e3cd91
 
 
 
 
4cc901a
 
 
1e3cd91
4cc901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3cd91
 
 
 
 
4cc901a
 
 
 
 
 
 
fd38fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc901a
 
a7b8414
4cc901a
 
 
1e3cd91
 
 
 
 
 
4cc901a
 
a7b8414
4cc901a
 
 
 
 
 
a7b8414
4cc901a
1e3cd91
 
 
 
 
 
4cc901a
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b6361
4cc901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3cd91
4cc901a
 
 
 
 
 
 
a7b8414
4cc901a
 
 
 
 
 
 
 
3d298d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779331d
 
 
 
a7b8414
779331d
 
 
 
 
 
1e3cd91
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import re
import time
from io import BytesIO
import uuid
from dataclasses import dataclass
from glob import iglob
import argparse
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image
import spaces

import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from transformers import pipeline

from flux.sampling import denoise, get_schedule, prepare, unpack
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5)
from huggingface_hub import login
login(token=os.getenv('Token'))


import torch

device = torch.cuda.current_device()
total_memory = torch.cuda.get_device_properties(device).total_memory
allocated_memory = torch.cuda.memory_allocated(device)
reserved_memory = torch.cuda.memory_reserved(device)

print(f"Total memory: {total_memory / 1024**2:.2f} MB")
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")


@dataclass
class SamplingOptions:
    source_prompt: str
    target_prompt: str
    # prompt: str
    width: int
    height: int
    num_steps: int
    guidance: float
    seed: int | None

@torch.inference_mode()
def encode(init_image, torch_device, ae):
    init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
    init_image = init_image.unsqueeze(0) 
    init_image = init_image.to(torch_device)
    ae = ae.cuda()
    with torch.no_grad():
        init_image = ae.encode(init_image.to()).to(torch.bfloat16)
    return init_image


class FluxEditor:
    def __init__(self, args):
        self.args = args
        self.device = torch.device(args.device)
        self.offload = args.offload
        self.name = args.name
        self.is_schnell = args.name == "flux-schnell"

        self.feature_path = 'feature'
        self.output_dir = 'result'
        self.add_sampling_metadata = True

        if self.name not in configs:
            available = ", ".join(configs.keys())
            raise ValueError(f"Got unknown model name: {name}, chose from {available}")

        # init all components
        self.t5 = load_t5(self.device, max_length=256 if self.name == "flux-schnell" else 512)
        self.clip = load_clip(self.device)
        self.model = load_flow_model(self.name, device="cpu" if self.offload else self.device)
        self.ae = load_ae(self.name, device="cpu" if self.offload else self.device)
        self.t5.eval()
        self.clip.eval()
        self.ae.eval()
        self.model.eval()

        if self.offload:
            self.model.cpu()
            torch.cuda.empty_cache()
            self.ae.encoder.to(self.device)
    
    @torch.inference_mode()
    def edit(self, init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
        torch.cuda.empty_cache()
        seed = None
        # if seed == -1:
        #     seed = None
        
        shape = init_image.shape

        new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
        new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16

        init_image = init_image[:new_h, :new_w, :]

        width, height = init_image.shape[0], init_image.shape[1]
        init_image = encode(init_image, self.device, self.ae)

        print(init_image.shape)

        rng = torch.Generator(device="cpu")
        opts = SamplingOptions(
            source_prompt=source_prompt,
            target_prompt=target_prompt,
            width=width,
            height=height,
            num_steps=num_steps,
            guidance=guidance,
            seed=seed,
        )
        if opts.seed is None:
            opts.seed = torch.Generator(device="cpu").seed()
        
        print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
        t0 = time.perf_counter()

        opts.seed = None
        if self.offload:
            self.ae = self.ae.cpu()
            torch.cuda.empty_cache()
            self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)

        #############inverse#######################
        info = {}
        info['feature'] = {}
        info['inject_step'] = inject_step

        if not os.path.exists(self.feature_path):
            os.mkdir(self.feature_path)
        
        print("!!!!!!!!self.t5!!!!!!",next(self.t5.parameters()).device)
        print("!!!!!!!!self.clip!!!!!!",next(self.clip.parameters()).device)
        print("!!!!!!!!self.model!!!!!!",next(self.model.parameters()).device)

        device = torch.cuda.current_device()
        total_memory = torch.cuda.get_device_properties(device).total_memory
        allocated_memory = torch.cuda.memory_allocated(device)
        reserved_memory = torch.cuda.memory_reserved(device)
        
        print(f"Total memory: {total_memory / 1024**2:.2f} MB")
        print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
        print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
        self.t5 = self.t5.cuda()
        self.clip = self.clip.cuda()
        self.model = self.model.cuda()

        device = torch.cuda.current_device()
        total_memory = torch.cuda.get_device_properties(device).total_memory
        allocated_memory = torch.cuda.memory_allocated(device)
        reserved_memory = torch.cuda.memory_reserved(device)
        
        print(f"Total memory: {total_memory / 1024**2:.2f} MB")
        print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
        print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")


        with torch.no_grad():
            inp = prepare(self.t5, self.clip, init_image, prompt=opts.source_prompt)
            inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
        timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))

        # offload TEs to CPU, load model to gpu
        if self.offload:
            self.t5, self.clip = self.t5.cpu(), self.clip.cpu()
            torch.cuda.empty_cache()
            self.model = self.model.to(self.device)

        # inversion initial noise
        with torch.no_grad():
            z, info = denoise(self.model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
        
        inp_target["img"] = z

        timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))

        # denoise initial noise
        x, _ = denoise(self.model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)

        # offload model, load autoencoder to gpu
        if self.offload:
            self.model.cpu()
            torch.cuda.empty_cache()
            self.ae.decoder.to(x.device)

        # decode latents to pixel space
        x = unpack(x.float(), opts.width, opts.height)

        output_name = os.path.join(self.output_dir, "img_{idx}.jpg")
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
            idx = 0
        else:
            fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
            if len(fns) > 0:
                idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
            else:
                idx = 0

        ae = ae.cuda()
        with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
            x = self.ae.decode(x)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        t1 = time.perf_counter()

        fn = output_name.format(idx=idx)
        print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
        # bring into PIL format and save
        x = x.clamp(-1, 1)
        x = embed_watermark(x.float())
        x = rearrange(x[0], "c h w -> h w c")

        img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
        exif_data = Image.Exif()
        exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
        exif_data[ExifTags.Base.Make] = "Black Forest Labs"
        exif_data[ExifTags.Base.Model] = self.name
        if self.add_sampling_metadata:
            exif_data[ExifTags.Base.ImageDescription] = source_prompt
        img.save(fn, exif=exif_data, quality=95, subsampling=0)

        
        print("End Edit")
        return img



def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
    editor = FluxEditor(args)
    is_schnell = model_name == "flux-schnell"

    with gr.Blocks() as demo:
        gr.Markdown(f"# RF-Edit Demo (FLUX for image editing)")
        
        with gr.Row():
            with gr.Column():
                # source_prompt = gr.Textbox(label="Source Prompt", value="")
                # target_prompt = gr.Textbox(label="Target Prompt", value="")
                source_prompt = gr.Text(
                    label="Source Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your source prompt",
                    container=False,
                    value="" 
                )
                target_prompt = gr.Text(
                    label="Target Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your target prompt",
                    container=False,
                    value="" 
                )
                init_image = gr.Image(label="Input Image", visible=True)
                
                
                generate_btn = gr.Button("Generate")
            
            with gr.Column():
                with gr.Accordion("Advanced Options", open=True):
                    num_steps = gr.Slider(1, 30, 25, step=1, label="Number of steps")
                    inject_step = gr.Slider(1, 15, 5, step=1, label="Number of inject steps")
                    guidance = gr.Slider(1.0, 10.0, 2, step=0.1, label="Guidance", interactive=not is_schnell)
                    # seed = gr.Textbox(0, label="Seed (-1 for random)", visible=False)
                    # add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=False)
                
                output_image = gr.Image(label="Generated Image")

        generate_btn.click(
            fn=editor.edit,
            inputs=[init_image, source_prompt, target_prompt, num_steps, inject_step, guidance],
            outputs=[output_image]
        )


    return demo


if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Flux")
    parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
    parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
    parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
    parser.add_argument("--share", action="store_true", help="Create a public link to your demo")

    parser.add_argument("--port", type=int, default=41035)
    args = parser.parse_args()

    demo = create_demo(args.name, args.device)
    demo.launch()