Spaces:
Sleeping
Sleeping
# Importing required Libraries | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import os, pickle | |
from sklearn.tree import DecisionTreeRegressor | |
from sklearn import preprocessing | |
# Setting up page configuration and directory path | |
st.set_page_config(page_title="Sales Forecasting App", page_icon="🐞", layout="centered") | |
DIRPATH = os.path.dirname(os.path.realpath(__file__)) | |
# Setting background image | |
import base64 | |
def add_bg_from_local(image_file): | |
with open(image_file, "rb") as image_file: | |
encoded_string = base64.b64encode(image_file.read()) | |
st.markdown( | |
f""" | |
<style> | |
.stApp {{ | |
background-image: url(data:image/{"jpg"};base64,{encoded_string.decode()}); | |
background-size: cover | |
}} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
add_bg_from_local('background.jpg') | |
# Setting up logo | |
left1, left2, mid,right1, right2 = st.columns(5) | |
with mid: | |
st.image("logo.jpg", use_column_width=True) | |
# Setting up Sidebar | |
social_acc = ['Data Field Description', 'EDA', 'About App'] | |
social_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', social_acc) | |
if social_acc_nav == 'Data Field Description': | |
st.sidebar.markdown("<h2 style='text-align: center;'> Data Field Description </h2> ", unsafe_allow_html=True) | |
st.sidebar.markdown("**Date:** The date you want to predict sales for") | |
st.sidebar.markdown("**Family:** identifies the type of product sold") | |
st.sidebar.markdown("**Onpromotion:** gives the total number of items in a product family that are being promoted at a store at a given date") | |
st.sidebar.markdown("**Store Number:** identifies the store at which the products are sold") | |
st.sidebar.markdown("**Holiday Locale:** provide information about the locale where holiday is celebrated") | |
elif social_acc_nav == 'EDA': | |
st.sidebar.markdown("<h2 style='text-align: center;'> Exploratory Data Analysis </h2> ", unsafe_allow_html=True) | |
st.sidebar.markdown('''---''') | |
st.sidebar.markdown('''The exploratory data analysis of this project can be find in a Jupyter notebook from the linl below''') | |
st.sidebar.markdown("[Open Notebook](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting/blob/main/project_workflow.ipynb)") | |
elif social_acc_nav == 'About App': | |
st.sidebar.markdown("<h2 style='text-align: center;'> Sales Forecasting App </h2> ", unsafe_allow_html=True) | |
st.sidebar.markdown('''---''') | |
st.sidebar.markdown("This App predicts the sales for product families sold at Favorita stores using regression model.") | |
st.sidebar.markdown("") | |
st.sidebar.markdown("[ Visit Github Repository for more information](https://github.com/Kyei-frank/Regression-Project-Store-Sales--Time-Series-Forecasting)") | |
# Loading Machine Learning Objects | |
def load_saved_objects(file_path = 'ML_items'): | |
# Function to load saved objects | |
with open('ML_items', 'rb') as file: | |
loaded_object = pickle.load(file) | |
return loaded_object | |
# Instantiating ML_items | |
Loaded_object = load_saved_objects(file_path = 'ML_items') | |
model, encoder, train_data, stores, holidays_event = Loaded_object['model'], Loaded_object['encoder'], Loaded_object['train_data'], Loaded_object['stores'], Loaded_object['holidays_event'] | |
# Setting Function for extracting Calendar features | |
def getDateFeatures(df, date): | |
df['date'] = pd.to_datetime(df['date']) | |
df['month'] = df.date.dt.month | |
df['day_of_month'] = df.date.dt.day | |
df['day_of_year'] = df.date.dt.dayofyear | |
df['week_of_year'] = df.date.dt.isocalendar().week | |
df['day_of_week'] = df.date.dt.dayofweek | |
df['year'] = df.date.dt.year | |
df['is_weekend']= np.where(df['day_of_week'] > 4, 1, 0) | |
df['is_month_start']= df.date.dt.is_month_start.astype(int) | |
df['is_month_end']= df.date.dt.is_month_end.astype(int) | |
df['quarter']= df.date.dt.quarter | |
df['is_quarter_start']= df.date.dt.is_quarter_start.astype(int) | |
df['is_quarter_end']= df.date.dt.is_quarter_end.astype(int) | |
df['is_year_start']= df.date.dt.is_year_start.astype(int) | |
return df | |
# Setting up variables for input data | |
def setup(tmp_df_file): | |
"Setup the required elements like files, models, global variables, etc" | |
pd.DataFrame( | |
dict( | |
date=[], | |
store_nbr=[], | |
family=[], | |
onpromotion=[], | |
city=[], | |
state=[], | |
store_type=[], | |
cluster=[], | |
day_type=[], | |
locale=[], | |
locale_name=[], | |
) | |
).to_csv(tmp_df_file, index=False) | |
# Setting up a file to save our input data | |
tmp_df_file = os.path.join(DIRPATH, "tmp", "data.csv") | |
setup(tmp_df_file) | |
# setting Title for forms | |
st.markdown("<h2 style='text-align: center;'> Sales Prediction </h2> ", unsafe_allow_html=True) | |
st.markdown("<h7 style='text-align: center;'> Fill in the details below and click on SUBMIT button to make a prediction for a specific date and item </h7> ", unsafe_allow_html=True) | |
# Creating columns for for input data(forms) | |
left_col, mid_col, right_col = st.columns(3) | |
# Developing forms to collect input data | |
with st.form(key="information", clear_on_submit=True): | |
# Setting up input data for 1st column | |
left_col.markdown("**PRODUCT DATA**") | |
date = left_col.date_input("Prediction Date:") | |
family = left_col.selectbox("Item family:", options= list(train_data["family"].unique())) | |
onpromotion = left_col.selectbox("Onpromotion code:", options= set(train_data["onpromotion"].unique())) | |
store_nbr = left_col.selectbox("Store Number:", options= set(stores["store_nbr"].unique())) | |
# Setting up input data for 2nd column | |
mid_col.markdown("**STORE DATA**") | |
city = mid_col.selectbox("City:", options= set(stores["city"].unique())) | |
state = mid_col.selectbox("State:", options= list(stores["state"].unique())) | |
cluster = mid_col.selectbox("Store Cluster:", options= list(stores["cluster"].unique())) | |
store_type = mid_col.radio("Store Type:", options= set(stores["store_type"].unique()), horizontal = True) | |
# Setting up input data for 3rd column | |
right_col.markdown("**ADDITIONAL DATA**") | |
check= right_col.checkbox("Is it a Holiday or weekend?") | |
if check: | |
right_col.write('Fill the following information on Day Type') | |
day_type = right_col.selectbox("Holiday:", options= ('Holiday','Special Day:Transfered/Additional Holiday','No Work/Weekend')) | |
locale= right_col.selectbox("Holiday Locale:", options= list(holidays_event["locale"].unique())) | |
locale_name= right_col.selectbox("Locale Name:", options= list(holidays_event["locale_name"].unique())) | |
else: | |
day_type = 'Workday' | |
locale = 'National' | |
locale_name= 'Ecuador' | |
submitted = st.form_submit_button(label="Submit") | |
# Setting up background operations after submitting forms | |
if submitted: | |
# Saving input data as csv after submission | |
pd.read_csv(tmp_df_file).append( | |
dict( | |
date = date, | |
store_nbr = store_nbr, | |
family=family, | |
onpromotion= onpromotion, | |
city=city, | |
state=state, | |
store_type=store_type, | |
cluster=cluster, | |
day_type=day_type, | |
locale=locale, | |
locale_name=locale_name | |
), | |
ignore_index=True, | |
).to_csv(tmp_df_file, index=False) | |
st.balloons() | |
# Converting input data to a dataframe for prediction | |
df = pd.read_csv(tmp_df_file) | |
df= df.copy() | |
# Getting date Features | |
processed_data= getDateFeatures(df, 'date') | |
processed_data= processed_data.drop(columns=['date']) | |
# Encoding Categorical Variables | |
encoder = preprocessing.LabelEncoder() | |
cols = ['family', 'city', 'state', 'store_type', 'locale', 'locale_name', 'day_type'] | |
for col in cols: | |
processed_data[col] = encoder.fit_transform(processed_data[col]) | |
# Making Predictions | |
def predict(X, model): | |
results = model.predict(X) | |
return results | |
prediction = predict(X= processed_data, model= Loaded_object['model']) | |
df['Sales']= prediction | |
# Displaying prediction results | |
st.markdown('''---''') | |
st.markdown("<h4 style='text-align: center;'> Prediction Results </h4> ", unsafe_allow_html=True) | |
st.success(f"Predicted Sales: {prediction[-1]}") | |
st.markdown('''---''') | |
# Making expander to view all records | |
expander = st.expander("See all records") | |
with expander: | |
df = pd.read_csv(tmp_df_file) | |
df['Sales']= prediction | |
st.dataframe(df) |