MarieAngeA13 commited on
Commit
8d97474
·
1 Parent(s): 06bd1d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -1,41 +1,42 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
- pip install googletrans==4.0.0rc1
5
  from googletrans import Translator
6
 
7
- # Load the sentiment analysis model from our BERT model
8
- classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
9
 
10
- # Create a Streamlit app
 
 
 
11
  st.title('Sentiment Analysis with BERT')
12
  st.write('Enter some text and we will predict its sentiment!')
13
 
14
- # Add a text input box for the user to enter text
15
  translator = Translator()
16
  text_input = st.text_input('Enter text here')
17
 
 
18
  detected_language = translator.detect(text_input).lang
19
 
 
20
  if detected_language == 'fr':
21
  translation = translator.translate(text_input, src='fr', dest='en')
22
  translated_text = translation.text
23
  else:
24
  translated_text = text_input
25
- print(translated_text)
26
-
27
 
28
-
29
- # When the user submits text, run the sentiment analysis model on it
30
  if st.button('Submit'):
31
- # Predict the sentiment of the text using our own BERT model
32
  output = classifier(translated_text)
33
 
34
  best_prediction = output[0]
35
  sentiment = best_prediction['label']
36
  confidence = best_prediction['score']
37
 
38
- # Display the sentiment prediction to the user
39
  st.write(f'Sentiment: {sentiment}')
40
  st.write(f'Confidence: {round(confidence, 2)}')
41
-
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
4
  from googletrans import Translator
5
 
6
+ # Installer le package googletrans
7
+ !pip install googletrans==4.0.0rc1
8
 
9
+ # Charger le modèle de classification des sentiments BERT
10
+ classifier = pipeline("text-classification", model="MarieAngeA13/Sentiment-Analysis-BERT")
11
+
12
+ # Créer une application Streamlit
13
  st.title('Sentiment Analysis with BERT')
14
  st.write('Enter some text and we will predict its sentiment!')
15
 
16
+ # Ajouter un champ de saisie de texte pour l'utilisateur
17
  translator = Translator()
18
  text_input = st.text_input('Enter text here')
19
 
20
+ # Détecter la langue du texte saisi
21
  detected_language = translator.detect(text_input).lang
22
 
23
+ # Traduire le texte s'il est en français
24
  if detected_language == 'fr':
25
  translation = translator.translate(text_input, src='fr', dest='en')
26
  translated_text = translation.text
27
  else:
28
  translated_text = text_input
29
+ st.write(translated_text)
 
30
 
31
+ # Lorsque l'utilisateur clique sur "Submit"
 
32
  if st.button('Submit'):
33
+ # Prédire le sentiment du texte en utilisant notre modèle BERT
34
  output = classifier(translated_text)
35
 
36
  best_prediction = output[0]
37
  sentiment = best_prediction['label']
38
  confidence = best_prediction['score']
39
 
40
+ # Afficher la prédiction de sentiment à l'utilisateur
41
  st.write(f'Sentiment: {sentiment}')
42
  st.write(f'Confidence: {round(confidence, 2)}')