File size: 1,625 Bytes
5fd0c28
2af305a
8a91905
2af305a
39fa555
2af305a
 
f613acc
5fd0c28
 
 
 
 
 
 
 
2af305a
 
 
 
 
 
 
408d189
2af305a
5fd0c28
2af305a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd0c28
 
 
2af305a
5fd0c28
 
2af305a
5fd0c28
 
 
b2af35c
2af305a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load your model and tokenizer
model_name = "Mat17892/llama_lora_G14"  # Replace with your Hugging Face model name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # Prepare input for the model
    input_text = message
    inputs = tokenizer(input_text, return_tensors="pt")
    
    # Generate response
    outputs = model.generate(
        **inputs, 
        max_new_tokens=max_tokens, 
        temperature=temperature, 
        top_p=top_p
    )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Create the Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
    ],
)

if __name__ == "__main__":
    demo.launch()