|
import gradio as gr |
|
from unsloth import FastLanguageModel |
|
import torch |
|
|
|
|
|
|
|
max_seq_length = 2048 |
|
load_in_4bit = True |
|
model_path = "/content/drive/My Drive/llama_lora_model_1" |
|
|
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_path, |
|
max_seq_length=max_seq_length, |
|
load_in_4bit=load_in_4bit, |
|
) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = model.to(device) |
|
|
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
).to(device) |
|
|
|
|
|
outputs = model.generate( |
|
input_ids=inputs["input_ids"], |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
use_cache=True, |
|
) |
|
|
|
|
|
response = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
|
|
return response[0] |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|