|
#include "common.h" |
|
#include "llama.h" |
|
#include "ggml.h" |
|
|
|
#ifdef GGML_USE_CUDA |
|
#include "ggml-cuda.h" |
|
#endif |
|
|
|
#ifdef GGML_USE_METAL |
|
#include "ggml-metal.h" |
|
#endif |
|
|
|
#include <cstdio> |
|
#include <ctime> |
|
#include <random> |
|
#include <string> |
|
#include <vector> |
|
|
|
#define DEBUG_POS 5 |
|
|
|
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) { |
|
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]); |
|
if (!with_data) return; |
|
printf("%s: %s[0] = [", __func__, t->name); |
|
for (size_t i = 0; i <= DEBUG_POS; i++) { |
|
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0)); |
|
} |
|
printf(" ... ]\n"); |
|
} |
|
|
|
namespace PCA { |
|
|
|
|
|
struct pca_params { |
|
int n_threads = 1; |
|
int n_batch = 20; |
|
int n_iterations = 1000; |
|
float tolerance = 1e-7; |
|
|
|
|
|
int i_layer = 0; |
|
int n_layers = 0; |
|
}; |
|
|
|
|
|
struct pca_result { |
|
struct ggml_tensor * calculated_square = NULL; |
|
std::vector<struct ggml_tensor *> eigenvectors; |
|
std::vector<float> distances; |
|
}; |
|
|
|
struct pca_model { |
|
ggml_backend_t backend = NULL; |
|
ggml_backend_buffer_t buffer; |
|
struct ggml_context * ctx; |
|
struct ggml_context * ctx_host; |
|
|
|
|
|
struct ggml_tensor * dev_input; |
|
struct ggml_tensor * dev_square; |
|
struct ggml_tensor * dev_eigenvector; |
|
|
|
pca_model(struct ggml_tensor * t_input) { |
|
#ifdef GGML_USE_CUDA |
|
fprintf(stderr, "%s: using CUDA backend\n", __func__); |
|
backend = ggml_backend_cuda_init(0); |
|
if (!backend) { |
|
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); |
|
} |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!backend) { |
|
backend = ggml_backend_cpu_init(); |
|
} |
|
|
|
const int num_tensors = 4; |
|
struct ggml_init_params params { |
|
ggml_tensor_overhead() * num_tensors, |
|
NULL, |
|
true, |
|
}; |
|
ctx = ggml_init(params); |
|
|
|
auto n_samples = t_input->ne[0]; |
|
auto n_embd = t_input->ne[1]; |
|
|
|
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd); |
|
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); |
|
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
ggml_set_name(dev_input, "dev_input"); |
|
ggml_set_name(dev_square, "dev_square"); |
|
ggml_set_name(dev_eigenvector, "dev_eigenvector"); |
|
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); |
|
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input)); |
|
|
|
|
|
{ |
|
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0); |
|
std::default_random_engine generator(static_cast<unsigned int>(std::time(0))); |
|
std::uniform_real_distribution<float> distribution(0.0, 1.0); |
|
float sum_sqr = 0.0; |
|
for (size_t i = 0; i < random_vec.size(); ++i) { |
|
float f = distribution(generator); |
|
sum_sqr += f * f; |
|
random_vec[i] = f; |
|
} |
|
|
|
float random_vec_norm = std::sqrt(sum_sqr); |
|
for (size_t i = 0; i < random_vec.size(); ++i) { |
|
random_vec[i] /= random_vec_norm; |
|
} |
|
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector)); |
|
} |
|
} |
|
|
|
~pca_model() { |
|
ggml_free(ctx); |
|
ggml_backend_buffer_free(buffer); |
|
ggml_backend_free(backend); |
|
} |
|
}; |
|
|
|
static struct ggml_cgraph * build_graph_piter( |
|
const struct pca_params & params, |
|
const pca_model & model, |
|
bool calc_square = false) { |
|
GGML_ASSERT(params.n_batch > 0); |
|
|
|
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); |
|
static std::vector<uint8_t> buf(buf_size); |
|
|
|
struct ggml_init_params params0 = { |
|
buf_size, |
|
buf.data(), |
|
true, |
|
}; |
|
|
|
struct ggml_context * ctx0 = ggml_init(params0); |
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0); |
|
|
|
|
|
struct ggml_tensor * tmp_square; |
|
if (calc_square) { |
|
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input); |
|
ggml_set_name(tmp_square, "tmp_square"); |
|
} |
|
|
|
struct ggml_tensor * b_tensor; |
|
struct ggml_tensor * distance; |
|
struct ggml_tensor * old_eigen = model.dev_eigenvector; |
|
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square; |
|
|
|
for (int i = 0; i < params.n_batch; ++i) { |
|
|
|
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen); |
|
ggml_set_name(b_tensor, "b_tensor"); |
|
|
|
|
|
b_tensor = ggml_div_inplace(ctx0, |
|
b_tensor, |
|
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor))) |
|
); |
|
ggml_format_name(b_tensor, "b_tensor_norm_%d", i); |
|
|
|
|
|
|
|
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1)); |
|
distance = ggml_sqrt_inplace(ctx0, |
|
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old))); |
|
ggml_format_name(distance, "distance_%d", i); |
|
|
|
old_eigen = b_tensor; |
|
|
|
|
|
ggml_build_forward_expand(gf, distance); |
|
} |
|
|
|
|
|
ggml_free(ctx0); |
|
return gf; |
|
} |
|
|
|
static ggml_status compute_piter( |
|
const struct pca_params & params, |
|
const pca_model & model, |
|
struct ggml_cgraph * gf, |
|
ggml_gallocr_t allocr, |
|
struct pca_result & result) { |
|
|
|
ggml_gallocr_alloc_graph(allocr, gf); |
|
|
|
if (ggml_backend_is_cpu(model.backend)) { |
|
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads); |
|
} |
|
|
|
ggml_status res = ggml_backend_graph_compute(model.backend, gf); |
|
if (res == GGML_STATUS_SUCCESS) { |
|
auto extract_i = [](std::string prefix, std::string str) -> int { |
|
int i = -1; |
|
if (str.rfind(prefix, 0) == 0) { |
|
sscanf(str.c_str(), (prefix + "%d").c_str(), &i); |
|
} |
|
return i; |
|
}; |
|
result.calculated_square = NULL; |
|
result.eigenvectors.clear(); |
|
result.distances.clear(); |
|
result.eigenvectors.resize(params.n_batch); |
|
result.distances.resize(params.n_batch); |
|
|
|
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) { |
|
auto node = ggml_graph_node(gf, i); |
|
int iter = -1; |
|
|
|
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) { |
|
result.eigenvectors[iter] = node; |
|
} |
|
|
|
if ((iter = extract_i("distance_", node->name)) > -1) { |
|
float d; |
|
ggml_backend_tensor_get(node, &d, 0, sizeof(float)); |
|
result.distances[iter] = d; |
|
|
|
} |
|
|
|
if (std::string(node->name) == "tmp_square") { |
|
result.calculated_square = node; |
|
} |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
static void power_iteration( |
|
const struct pca_params & params, |
|
struct ggml_tensor * input, |
|
struct ggml_tensor * output) { |
|
|
|
struct pca_model model(input); |
|
|
|
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend)); |
|
struct pca_result result; |
|
struct ggml_tensor * last_eigenvector = NULL; |
|
|
|
int n_iters = params.n_iterations / params.n_batch; |
|
for (int iter = 0; iter < n_iters; ++iter) { |
|
bool calc_square = (iter == 0); |
|
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square); |
|
|
|
compute_piter(params, model, gf, allocr, result); |
|
|
|
for (size_t k = 0; k < result.distances.size(); ++k) { |
|
last_eigenvector = result.eigenvectors[k]; |
|
if (result.distances[k] < params.tolerance) { |
|
break; |
|
} |
|
} |
|
|
|
if (calc_square) { |
|
|
|
GGML_ASSERT(result.calculated_square != NULL); |
|
ggml_backend_tensor_copy(result.calculated_square, model.dev_square); |
|
} |
|
|
|
{ |
|
|
|
GGML_ASSERT(last_eigenvector != NULL); |
|
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector); |
|
} |
|
|
|
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n", |
|
__func__, params.i_layer+1, params.n_layers, iter+1, n_iters, params.n_batch); |
|
} |
|
|
|
|
|
GGML_ASSERT(last_eigenvector); |
|
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector)); |
|
|
|
ggml_gallocr_free(allocr); |
|
|
|
|
|
|
|
} |
|
|
|
static void run_pca( |
|
struct pca_params & params, |
|
const std::vector<struct ggml_tensor *> & v_input, |
|
const std::vector<struct ggml_tensor *> & v_output) { |
|
printf("%s: Running PCA...\n", __func__); |
|
for (size_t il = 0; il < v_input.size(); ++il) { |
|
|
|
|
|
struct ggml_tensor * ctrl_out = v_output[il]; |
|
ggml_format_name(ctrl_out, "direction.%ld", il+1); |
|
|
|
|
|
params.i_layer = il; |
|
params.n_layers = v_input.size(); |
|
power_iteration(params, v_input[il], ctrl_out); |
|
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size()); |
|
} |
|
} |
|
|
|
} |
|
|