|
#include "arg.h" |
|
#include "ggml.h" |
|
#include "common.h" |
|
#include "ngram-cache.h" |
|
#include "sampling.h" |
|
#include "log.h" |
|
#include "llama.h" |
|
|
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <fstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
int main(int argc, char ** argv){ |
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
|
|
const int n_draft = params.speculative.n_max; |
|
|
|
const bool dump_kv_cache = params.dump_kv_cache; |
|
|
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
|
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
llama_model * model = llama_init.model; |
|
llama_context * ctx = llama_init.context; |
|
|
|
|
|
std::vector<llama_token> inp; |
|
inp = common_tokenize(ctx, params.prompt, true, true); |
|
|
|
common_ngram_cache ngram_cache_context; |
|
common_ngram_cache ngram_cache_dynamic; |
|
common_ngram_cache ngram_cache_static; |
|
int64_t t_draft_flat_us = 0; |
|
int64_t t_draft_us = 0; |
|
|
|
{ |
|
|
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false); |
|
|
|
if (!params.lookup_cache_static.empty()) { |
|
try { |
|
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static); |
|
} catch (std::ifstream::failure const &) { |
|
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); |
|
exit(1); |
|
} |
|
} |
|
|
|
if (!params.lookup_cache_dynamic.empty()) { |
|
try { |
|
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic); |
|
} catch (std::ifstream::failure const &) {} |
|
} |
|
|
|
t_draft_flat_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
|
|
const int max_context_size = llama_n_ctx(ctx); |
|
const int max_tokens_list_size = max_context_size - 4; |
|
|
|
if ((int) inp.size() > max_tokens_list_size) { |
|
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); |
|
return 1; |
|
} |
|
|
|
LOG("\n\n"); |
|
|
|
for (auto id : inp) { |
|
LOG("%s", common_token_to_piece(ctx, id).c_str()); |
|
} |
|
|
|
fflush(stderr); |
|
|
|
const int n_input = inp.size(); |
|
|
|
const auto t_enc_start = ggml_time_us(); |
|
|
|
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1)); |
|
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1)); |
|
|
|
const auto t_enc_end = ggml_time_us(); |
|
|
|
int n_predict = 0; |
|
int n_drafted = 0; |
|
int n_accept = 0; |
|
|
|
int n_past = inp.size(); |
|
|
|
bool has_eos = false; |
|
|
|
struct common_sampler * smpl = common_sampler_init(model, params.sampling); |
|
|
|
std::vector<llama_token> draft; |
|
|
|
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1); |
|
|
|
|
|
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1); |
|
|
|
const auto t_dec_start = ggml_time_us(); |
|
|
|
while (true) { |
|
|
|
if (dump_kv_cache) { |
|
llama_kv_cache_view_update(ctx, &kvc_view); |
|
common_kv_cache_dump_view_seqs(kvc_view, 40); |
|
} |
|
|
|
|
|
LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str()); |
|
|
|
int i_dft = 0; |
|
while (true) { |
|
|
|
llama_token id = common_sampler_sample(smpl, ctx, i_dft); |
|
|
|
common_sampler_accept(smpl, id, true); |
|
|
|
const std::string token_str = common_token_to_piece(ctx, id); |
|
|
|
if (!params.use_color) { |
|
LOG("%s", token_str.c_str()); |
|
} |
|
|
|
if (llama_token_is_eog(model, id)) { |
|
has_eos = true; |
|
} |
|
|
|
++n_predict; |
|
|
|
|
|
if (i_dft < (int) draft.size() && id == draft[i_dft]) { |
|
LOG_DBG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str()); |
|
++n_accept; |
|
++n_past; |
|
++i_dft; |
|
inp.push_back(id); |
|
{ |
|
|
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); |
|
t_draft_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
|
|
if (params.use_color) { |
|
|
|
LOG("\033[34m%s\033[0m", token_str.c_str()); |
|
fflush(stdout); |
|
} |
|
continue; |
|
} |
|
|
|
if (params.use_color) { |
|
LOG("%s", token_str.c_str()); |
|
} |
|
fflush(stdout); |
|
|
|
|
|
LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); |
|
|
|
draft.clear(); |
|
draft.push_back(id); |
|
inp.push_back(id); |
|
{ |
|
|
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); |
|
t_draft_us += ggml_time_us() - t_start_draft_us; |
|
} |
|
break; |
|
} |
|
|
|
if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) { |
|
break; |
|
} |
|
|
|
|
|
|
|
llama_kv_cache_seq_rm(ctx, 0, n_past, -1); |
|
|
|
common_batch_clear(batch_tgt); |
|
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); |
|
|
|
|
|
GGML_ASSERT(draft.size() == 1); |
|
GGML_ASSERT(draft[0] == inp.back()); |
|
const int64_t t_start_draft_us = ggml_time_us(); |
|
|
|
common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); |
|
|
|
for (size_t i = 1; i < draft.size(); ++i) { |
|
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); |
|
} |
|
|
|
t_draft_us += ggml_time_us() - t_start_draft_us; |
|
n_drafted += draft.size() - 1; |
|
|
|
llama_decode(ctx, batch_tgt); |
|
++n_past; |
|
|
|
draft.erase(draft.begin()); |
|
} |
|
|
|
auto t_dec_end = ggml_time_us(); |
|
|
|
|
|
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); |
|
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic); |
|
|
|
LOG("\n\n"); |
|
|
|
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); |
|
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); |
|
|
|
LOG_INF("\n"); |
|
LOG_INF("n_draft = %d\n", n_draft); |
|
LOG_INF("n_predict = %d\n", n_predict); |
|
LOG_INF("n_drafted = %d\n", n_drafted); |
|
LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); |
|
LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", |
|
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); |
|
LOG_INF("n_accept = %d\n", n_accept); |
|
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); |
|
|
|
LOG_INF("\ntarget:\n\n"); |
|
common_perf_print(ctx, smpl); |
|
|
|
common_sampler_free(smpl); |
|
|
|
llama_batch_free(batch_tgt); |
|
|
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
llama_backend_free(); |
|
|
|
LOG("\n\n"); |
|
|
|
return 0; |
|
} |
|
|