|
#include "utils.hpp" |
|
|
|
#include "arg.h" |
|
#include "common.h" |
|
#include "json-schema-to-grammar.h" |
|
#include "llama.h" |
|
#include "log.h" |
|
#include "sampling.h" |
|
#include "speculative.h" |
|
|
|
|
|
#define JSON_ASSERT GGML_ASSERT |
|
#include "json.hpp" |
|
|
|
#define MIMETYPE_JSON "application/json; charset=utf-8" |
|
|
|
|
|
#include "index.html.hpp" |
|
#include "completion.js.hpp" |
|
#include "loading.html.hpp" |
|
#include "deps_daisyui.min.css.hpp" |
|
#include "deps_markdown-it.js.hpp" |
|
#include "deps_tailwindcss.js.hpp" |
|
#include "deps_vue.esm-browser.js.hpp" |
|
|
|
#include <atomic> |
|
#include <condition_variable> |
|
#include <cstddef> |
|
#include <cinttypes> |
|
#include <deque> |
|
#include <memory> |
|
#include <mutex> |
|
#include <signal.h> |
|
#include <thread> |
|
#include <unordered_map> |
|
#include <unordered_set> |
|
|
|
using json = nlohmann::ordered_json; |
|
|
|
enum stop_type { |
|
STOP_TYPE_FULL, |
|
STOP_TYPE_PARTIAL, |
|
}; |
|
|
|
|
|
enum slot_state { |
|
SLOT_STATE_IDLE, |
|
SLOT_STATE_STARTED, |
|
SLOT_STATE_PROCESSING_PROMPT, |
|
SLOT_STATE_DONE_PROMPT, |
|
SLOT_STATE_GENERATING, |
|
}; |
|
|
|
enum server_state { |
|
SERVER_STATE_LOADING_MODEL, |
|
SERVER_STATE_READY, |
|
}; |
|
|
|
enum server_task_type { |
|
SERVER_TASK_TYPE_INFERENCE, |
|
SERVER_TASK_TYPE_CANCEL, |
|
SERVER_TASK_TYPE_NEXT_RESPONSE, |
|
SERVER_TASK_TYPE_METRICS, |
|
SERVER_TASK_TYPE_SLOT_SAVE, |
|
SERVER_TASK_TYPE_SLOT_RESTORE, |
|
SERVER_TASK_TYPE_SLOT_ERASE, |
|
SERVER_TASK_TYPE_SET_LORA, |
|
}; |
|
|
|
enum server_task_inf_type { |
|
SERVER_TASK_INF_TYPE_COMPLETION, |
|
SERVER_TASK_INF_TYPE_EMBEDDING, |
|
SERVER_TASK_INF_TYPE_RERANK, |
|
SERVER_TASK_INF_TYPE_INFILL, |
|
}; |
|
|
|
struct server_task { |
|
int id = -1; |
|
int id_target = -1; |
|
|
|
llama_tokens prompt_tokens; |
|
server_task_type type; |
|
json data; |
|
|
|
server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION; |
|
|
|
|
|
static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) { |
|
std::unordered_set<int> ids(tasks.size()); |
|
for (size_t i = 0; i < tasks.size(); i++) { |
|
ids.insert(tasks[i].id); |
|
} |
|
return ids; |
|
} |
|
}; |
|
|
|
struct server_task_result { |
|
int id = -1; |
|
|
|
json data; |
|
|
|
bool stop; |
|
bool error; |
|
}; |
|
|
|
struct server_static_file { |
|
const unsigned char * data; |
|
unsigned int size; |
|
const char * mime_type; |
|
}; |
|
|
|
struct slot_params { |
|
bool stream = true; |
|
bool cache_prompt = true; |
|
|
|
int32_t n_keep = 0; |
|
int32_t n_discard = 0; |
|
int32_t n_predict = -1; |
|
int32_t n_indent = 0; |
|
|
|
int64_t t_max_prompt_ms = -1; |
|
int64_t t_max_predict_ms = -1; |
|
|
|
std::vector<std::string> antiprompt; |
|
|
|
struct common_params_sampling sampling; |
|
struct common_params_speculative speculative; |
|
}; |
|
|
|
struct server_slot { |
|
int id; |
|
int id_task = -1; |
|
|
|
llama_batch batch_spec; |
|
|
|
llama_context * ctx_dft = nullptr; |
|
|
|
common_speculative * spec = nullptr; |
|
|
|
|
|
size_t index = 0; |
|
|
|
struct slot_params params; |
|
|
|
slot_state state = SLOT_STATE_IDLE; |
|
|
|
|
|
int64_t t_last_used = -1; |
|
|
|
|
|
int32_t n_ctx = 0; |
|
int32_t n_past = 0; |
|
int32_t n_decoded = 0; |
|
int32_t n_remaining = -1; |
|
int32_t i_batch = -1; |
|
int32_t n_predict = -1; |
|
|
|
|
|
int32_t n_prompt_tokens = 0; |
|
int32_t n_prompt_tokens_processed = 0; |
|
|
|
|
|
llama_tokens prompt_tokens; |
|
|
|
size_t last_nl_pos = 0; |
|
|
|
std::string generated_text; |
|
llama_tokens cache_tokens; |
|
std::vector<completion_token_output> generated_token_probs; |
|
|
|
server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION; |
|
|
|
bool has_next_token = true; |
|
bool has_new_line = false; |
|
bool truncated = false; |
|
bool stopped_eos = false; |
|
bool stopped_word = false; |
|
bool stopped_limit = false; |
|
|
|
bool timings_per_token = false; |
|
|
|
bool oaicompat = false; |
|
|
|
std::string oaicompat_model; |
|
std::string stopping_word; |
|
|
|
|
|
json json_schema; |
|
|
|
struct common_sampler * smpl = nullptr; |
|
|
|
llama_token sampled; |
|
|
|
|
|
size_t n_sent_text = 0; |
|
size_t n_sent_token_probs = 0; |
|
|
|
int64_t t_start_process_prompt; |
|
int64_t t_start_generation; |
|
|
|
double t_prompt_processing; |
|
double t_token_generation; |
|
|
|
std::function<void(int)> callback_on_release; |
|
|
|
void reset() { |
|
SLT_DBG(*this, "%s", "\n"); |
|
|
|
n_prompt_tokens = 0; |
|
last_nl_pos = 0; |
|
generated_text = ""; |
|
has_new_line = false; |
|
truncated = false; |
|
stopped_eos = false; |
|
stopped_word = false; |
|
stopped_limit = false; |
|
stopping_word = ""; |
|
n_past = 0; |
|
n_sent_text = 0; |
|
n_sent_token_probs = 0; |
|
inf_type = SERVER_TASK_INF_TYPE_COMPLETION; |
|
|
|
generated_token_probs.clear(); |
|
} |
|
|
|
bool has_budget(const common_params & global_params) { |
|
if (params.n_predict == -1 && global_params.n_predict == -1) { |
|
return true; |
|
} |
|
|
|
n_remaining = -1; |
|
|
|
if (params.n_predict != -1) { |
|
n_remaining = params.n_predict - n_decoded; |
|
} else if (global_params.n_predict != -1) { |
|
n_remaining = global_params.n_predict - n_decoded; |
|
} |
|
|
|
return n_remaining > 0; |
|
} |
|
|
|
bool is_processing() const { |
|
return state != SLOT_STATE_IDLE; |
|
} |
|
|
|
bool can_speculate() const { |
|
return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt; |
|
} |
|
|
|
void add_token(const completion_token_output & token) { |
|
if (!is_processing()) { |
|
SLT_WRN(*this, "%s", "slot is not processing\n"); |
|
return; |
|
} |
|
generated_token_probs.push_back(token); |
|
} |
|
|
|
void release() { |
|
if (is_processing()) { |
|
SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated); |
|
|
|
t_last_used = ggml_time_us(); |
|
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3; |
|
state = SLOT_STATE_IDLE; |
|
callback_on_release(id); |
|
} |
|
} |
|
|
|
json get_formated_timings() const { |
|
return json { |
|
{"prompt_n", n_prompt_tokens_processed}, |
|
{"prompt_ms", t_prompt_processing}, |
|
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed}, |
|
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed}, |
|
|
|
{"predicted_n", n_decoded}, |
|
{"predicted_ms", t_token_generation}, |
|
{"predicted_per_token_ms", t_token_generation / n_decoded}, |
|
{"predicted_per_second", 1e3 / t_token_generation * n_decoded}, |
|
}; |
|
} |
|
|
|
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) { |
|
size_t stop_pos = std::string::npos; |
|
|
|
for (const std::string & word : params.antiprompt) { |
|
size_t pos; |
|
|
|
if (type == STOP_TYPE_FULL) { |
|
const size_t tmp = word.size() + last_token_size; |
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; |
|
|
|
pos = text.find(word, from_pos); |
|
} else { |
|
pos = find_partial_stop_string(word, text); |
|
} |
|
|
|
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { |
|
if (type == STOP_TYPE_FULL) { |
|
stopped_word = true; |
|
stopping_word = word; |
|
has_next_token = false; |
|
} |
|
stop_pos = pos; |
|
} |
|
} |
|
|
|
return stop_pos; |
|
} |
|
|
|
void print_timings() const { |
|
const double t_prompt = t_prompt_processing / n_prompt_tokens_processed; |
|
const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; |
|
|
|
const double t_gen = t_token_generation / n_decoded; |
|
const double n_gen_second = 1e3 / t_token_generation * n_decoded; |
|
|
|
SLT_INF(*this, |
|
"\n" |
|
"\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" |
|
"\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" |
|
"\r total time = %10.2f ms / %5d tokens\n", |
|
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second, |
|
t_token_generation, n_decoded, t_gen, n_gen_second, |
|
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); |
|
} |
|
}; |
|
|
|
struct server_metrics { |
|
int64_t t_start = 0; |
|
|
|
uint64_t n_prompt_tokens_processed_total = 0; |
|
uint64_t t_prompt_processing_total = 0; |
|
uint64_t n_tokens_predicted_total = 0; |
|
uint64_t t_tokens_generation_total = 0; |
|
|
|
uint64_t n_prompt_tokens_processed = 0; |
|
uint64_t t_prompt_processing = 0; |
|
|
|
uint64_t n_tokens_predicted = 0; |
|
uint64_t t_tokens_generation = 0; |
|
|
|
uint64_t n_decode_total = 0; |
|
uint64_t n_busy_slots_total = 0; |
|
|
|
void init() { |
|
t_start = ggml_time_us(); |
|
} |
|
|
|
void on_prompt_eval(const server_slot & slot) { |
|
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; |
|
n_prompt_tokens_processed += slot.n_prompt_tokens_processed; |
|
t_prompt_processing += slot.t_prompt_processing; |
|
t_prompt_processing_total += slot.t_prompt_processing; |
|
} |
|
|
|
void on_prediction(const server_slot & slot) { |
|
n_tokens_predicted_total += slot.n_decoded; |
|
n_tokens_predicted += slot.n_decoded; |
|
t_tokens_generation += slot.t_token_generation; |
|
t_tokens_generation_total += slot.t_token_generation; |
|
} |
|
|
|
void on_decoded(const std::vector<server_slot> & slots) { |
|
n_decode_total++; |
|
for (const auto & slot : slots) { |
|
if (slot.is_processing()) { |
|
n_busy_slots_total++; |
|
} |
|
} |
|
} |
|
|
|
void reset_bucket() { |
|
n_prompt_tokens_processed = 0; |
|
t_prompt_processing = 0; |
|
n_tokens_predicted = 0; |
|
t_tokens_generation = 0; |
|
} |
|
}; |
|
|
|
struct server_queue { |
|
int id = 0; |
|
bool running; |
|
|
|
|
|
std::deque<server_task> queue_tasks; |
|
std::deque<server_task> queue_tasks_deferred; |
|
|
|
std::mutex mutex_tasks; |
|
std::condition_variable condition_tasks; |
|
|
|
|
|
std::function<void(server_task)> callback_new_task; |
|
std::function<void(void)> callback_update_slots; |
|
|
|
|
|
int post(server_task task, bool front = false) { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
if (task.id == -1) { |
|
task.id = id++; |
|
} |
|
QUE_DBG("new task, id = %d, front = %d\n", task.id, front); |
|
if (front) { |
|
queue_tasks.push_front(std::move(task)); |
|
} else { |
|
queue_tasks.push_back(std::move(task)); |
|
} |
|
condition_tasks.notify_one(); |
|
return task.id; |
|
} |
|
|
|
|
|
int post(std::vector<server_task> & tasks, bool front = false) { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
for (auto & task : tasks) { |
|
if (task.id == -1) { |
|
task.id = id++; |
|
} |
|
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front); |
|
if (front) { |
|
queue_tasks.push_front(std::move(task)); |
|
} else { |
|
queue_tasks.push_back(std::move(task)); |
|
} |
|
} |
|
condition_tasks.notify_one(); |
|
return 0; |
|
} |
|
|
|
|
|
void defer(server_task task) { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
QUE_DBG("defer task, id = %d\n", task.id); |
|
queue_tasks_deferred.push_back(std::move(task)); |
|
condition_tasks.notify_one(); |
|
} |
|
|
|
|
|
int get_new_id() { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
int new_id = id++; |
|
return new_id; |
|
} |
|
|
|
|
|
void on_new_task(std::function<void(server_task)> callback) { |
|
callback_new_task = std::move(callback); |
|
} |
|
|
|
|
|
void on_update_slots(std::function<void(void)> callback) { |
|
callback_update_slots = std::move(callback); |
|
} |
|
|
|
|
|
void pop_deferred_task() { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
if (!queue_tasks_deferred.empty()) { |
|
queue_tasks.emplace_back(std::move(queue_tasks_deferred.front())); |
|
queue_tasks_deferred.pop_front(); |
|
} |
|
condition_tasks.notify_one(); |
|
} |
|
|
|
|
|
void terminate() { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
running = false; |
|
condition_tasks.notify_all(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void start_loop() { |
|
running = true; |
|
|
|
while (true) { |
|
QUE_DBG("%s", "processing new tasks\n"); |
|
|
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
if (queue_tasks.empty()) { |
|
lock.unlock(); |
|
break; |
|
} |
|
server_task task = queue_tasks.front(); |
|
queue_tasks.pop_front(); |
|
lock.unlock(); |
|
|
|
QUE_DBG("processing task, id = %d\n", task.id); |
|
callback_new_task(std::move(task)); |
|
} |
|
|
|
|
|
QUE_DBG("%s", "update slots\n"); |
|
|
|
callback_update_slots(); |
|
|
|
QUE_DBG("%s", "waiting for new tasks\n"); |
|
{ |
|
std::unique_lock<std::mutex> lock(mutex_tasks); |
|
if (queue_tasks.empty()) { |
|
if (!running) { |
|
QUE_DBG("%s", "terminate\n"); |
|
return; |
|
} |
|
condition_tasks.wait(lock, [&]{ |
|
return (!queue_tasks.empty() || !running); |
|
}); |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
struct server_response { |
|
|
|
std::unordered_set<int> waiting_task_ids; |
|
|
|
|
|
std::vector<server_task_result> queue_results; |
|
|
|
std::mutex mutex_results; |
|
std::condition_variable condition_results; |
|
|
|
|
|
void add_waiting_task_id(int id_task) { |
|
SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size()); |
|
|
|
std::unique_lock<std::mutex> lock(mutex_results); |
|
waiting_task_ids.insert(id_task); |
|
} |
|
|
|
void add_waiting_tasks(const std::vector<server_task> & tasks) { |
|
std::unique_lock<std::mutex> lock(mutex_results); |
|
|
|
for (const auto & task : tasks) { |
|
SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size()); |
|
waiting_task_ids.insert(task.id); |
|
} |
|
} |
|
|
|
|
|
void remove_waiting_task_id(int id_task) { |
|
SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size()); |
|
|
|
std::unique_lock<std::mutex> lock(mutex_results); |
|
waiting_task_ids.erase(id_task); |
|
} |
|
|
|
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) { |
|
std::unique_lock<std::mutex> lock(mutex_results); |
|
|
|
for (const auto & id_task : id_tasks) { |
|
SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size()); |
|
waiting_task_ids.erase(id_task); |
|
} |
|
} |
|
|
|
|
|
server_task_result recv(const std::unordered_set<int> & id_tasks) { |
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex_results); |
|
condition_results.wait(lock, [&]{ |
|
return !queue_results.empty(); |
|
}); |
|
|
|
for (int i = 0; i < (int) queue_results.size(); i++) { |
|
if (id_tasks.find(queue_results[i].id) != id_tasks.end()) { |
|
server_task_result res = queue_results[i]; |
|
queue_results.erase(queue_results.begin() + i); |
|
return res; |
|
} |
|
} |
|
} |
|
|
|
|
|
} |
|
|
|
|
|
server_task_result recv(int id_task) { |
|
std::unordered_set<int> id_tasks = {id_task}; |
|
return recv(id_tasks); |
|
} |
|
|
|
|
|
void send(server_task_result & result) { |
|
SRV_DBG("sending result for task id = %d\n", result.id); |
|
|
|
std::unique_lock<std::mutex> lock(mutex_results); |
|
for (const auto & id_task : waiting_task_ids) { |
|
if (result.id == id_task) { |
|
SRV_DBG("task id = %d moved to result queue\n", result.id); |
|
|
|
queue_results.push_back(std::move(result)); |
|
condition_results.notify_all(); |
|
return; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
struct server_context { |
|
common_params params_base; |
|
|
|
llama_model * model = nullptr; |
|
llama_context * ctx = nullptr; |
|
std::vector<common_lora_adapter_container> loras; |
|
|
|
llama_model * model_dft = nullptr; |
|
llama_context_params cparams_dft; |
|
|
|
llama_batch batch = {}; |
|
|
|
bool clean_kv_cache = true; |
|
bool add_bos_token = true; |
|
bool has_eos_token = false; |
|
|
|
int32_t n_ctx; |
|
|
|
|
|
std::vector<server_slot> slots; |
|
json default_generation_settings_for_props; |
|
|
|
server_queue queue_tasks; |
|
server_response queue_results; |
|
|
|
server_metrics metrics; |
|
|
|
|
|
float slot_prompt_similarity = 0.0f; |
|
|
|
~server_context() { |
|
if (ctx) { |
|
llama_free(ctx); |
|
ctx = nullptr; |
|
} |
|
|
|
if (model) { |
|
llama_free_model(model); |
|
model = nullptr; |
|
} |
|
|
|
if (model_dft) { |
|
llama_free_model(model_dft); |
|
model_dft = nullptr; |
|
} |
|
|
|
|
|
for (server_slot & slot : slots) { |
|
common_sampler_free(slot.smpl); |
|
slot.smpl = nullptr; |
|
|
|
llama_free(slot.ctx_dft); |
|
slot.ctx_dft = nullptr; |
|
|
|
common_speculative_free(slot.spec); |
|
slot.spec = nullptr; |
|
|
|
llama_batch_free(slot.batch_spec); |
|
} |
|
|
|
llama_batch_free(batch); |
|
} |
|
|
|
bool load_model(const common_params & params) { |
|
SRV_INF("loading model '%s'\n", params.model.c_str()); |
|
|
|
params_base = params; |
|
|
|
common_init_result llama_init = common_init_from_params(params_base); |
|
|
|
model = llama_init.model; |
|
ctx = llama_init.context; |
|
loras = llama_init.lora_adapters; |
|
|
|
if (model == nullptr) { |
|
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str()); |
|
return false; |
|
} |
|
|
|
n_ctx = llama_n_ctx(ctx); |
|
|
|
add_bos_token = llama_add_bos_token(model); |
|
has_eos_token = !llama_add_eos_token(model); |
|
|
|
if (!params_base.speculative.model.empty()) { |
|
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str()); |
|
|
|
auto params_dft = params_base; |
|
|
|
params_dft.devices = params_base.speculative.devices; |
|
params_dft.model = params_base.speculative.model; |
|
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx; |
|
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers; |
|
params_dft.n_parallel = 1; |
|
|
|
common_init_result llama_init_dft = common_init_from_params(params_dft); |
|
|
|
model_dft = llama_init_dft.model; |
|
|
|
if (model_dft == nullptr) { |
|
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str()); |
|
return false; |
|
} |
|
|
|
if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) { |
|
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str()); |
|
|
|
llama_free (llama_init_dft.context); |
|
llama_free_model(llama_init_dft.model); |
|
|
|
return false; |
|
} |
|
|
|
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context); |
|
|
|
cparams_dft = common_context_params_to_llama(params_dft); |
|
cparams_dft.n_batch = n_ctx_dft; |
|
|
|
|
|
cparams_dft.type_k = GGML_TYPE_F16; |
|
cparams_dft.type_v = GGML_TYPE_F16; |
|
|
|
|
|
llama_free(llama_init_dft.context); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool validate_model_chat_template() const { |
|
std::vector<char> model_template(2048, 0); |
|
std::string template_key = "tokenizer.chat_template"; |
|
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); |
|
if (res >= 0) { |
|
llama_chat_message chat[] = {{"user", "test"}}; |
|
std::string tmpl = std::string(model_template.data(), model_template.size()); |
|
int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0); |
|
return chat_res > 0; |
|
} |
|
return false; |
|
} |
|
|
|
void init() { |
|
const int32_t n_ctx_slot = n_ctx / params_base.n_parallel; |
|
|
|
SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel); |
|
|
|
for (int i = 0; i < params_base.n_parallel; i++) { |
|
server_slot slot; |
|
|
|
slot.id = i; |
|
slot.n_ctx = n_ctx_slot; |
|
slot.n_predict = params_base.n_predict; |
|
|
|
if (model_dft) { |
|
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1); |
|
|
|
slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft); |
|
if (slot.ctx_dft == nullptr) { |
|
SRV_ERR("%s", "failed to create draft context\n"); |
|
return; |
|
} |
|
|
|
slot.spec = common_speculative_init(slot.ctx_dft); |
|
if (slot.spec == nullptr) { |
|
SRV_ERR("%s", "failed to create speculator\n"); |
|
return; |
|
} |
|
} |
|
|
|
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx); |
|
|
|
slot.params.sampling = params_base.sampling; |
|
|
|
slot.callback_on_release = [this](int) { |
|
queue_tasks.pop_deferred_task(); |
|
}; |
|
|
|
slot.reset(); |
|
|
|
slots.push_back(slot); |
|
} |
|
|
|
default_generation_settings_for_props = get_formated_generation(slots.front()); |
|
default_generation_settings_for_props["seed"] = -1; |
|
|
|
|
|
|
|
{ |
|
const int32_t n_batch = llama_n_batch(ctx); |
|
|
|
|
|
batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1); |
|
} |
|
|
|
metrics.init(); |
|
} |
|
|
|
server_slot * get_slot_by_id(int id) { |
|
for (server_slot & slot : slots) { |
|
if (slot.id == id) { |
|
return &slot; |
|
} |
|
} |
|
|
|
return nullptr; |
|
} |
|
|
|
server_slot * get_available_slot(const server_task & task) { |
|
server_slot * ret = nullptr; |
|
|
|
|
|
if (ret == nullptr && slot_prompt_similarity != 0.0f) { |
|
int lcs_len = 0; |
|
float similarity = 0; |
|
|
|
for (server_slot & slot : slots) { |
|
|
|
if (slot.is_processing()) { |
|
continue; |
|
} |
|
|
|
|
|
if (slot.cache_tokens.empty()) { |
|
continue; |
|
} |
|
|
|
|
|
int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens); |
|
|
|
|
|
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size()); |
|
|
|
|
|
if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) { |
|
lcs_len = cur_lcs_len; |
|
similarity = cur_similarity; |
|
ret = &slot; |
|
} |
|
} |
|
|
|
if (ret != nullptr) { |
|
SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity); |
|
} |
|
} |
|
|
|
|
|
if (ret == nullptr) { |
|
int64_t t_last = ggml_time_us(); |
|
for (server_slot & slot : slots) { |
|
|
|
if (slot.is_processing()) { |
|
continue; |
|
} |
|
|
|
|
|
if (slot.t_last_used < t_last) { |
|
t_last = slot.t_last_used; |
|
ret = &slot; |
|
} |
|
} |
|
|
|
if (ret != nullptr) { |
|
SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last); |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
bool launch_slot_with_task(server_slot & slot, const server_task & task) { |
|
|
|
slot_params defaults; |
|
defaults.sampling = params_base.sampling; |
|
defaults.speculative = params_base.speculative; |
|
|
|
const auto & data = task.data; |
|
|
|
if (data.count("__oaicompat") != 0) { |
|
slot.oaicompat = true; |
|
slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); |
|
} else { |
|
slot.oaicompat = false; |
|
slot.oaicompat_model = ""; |
|
} |
|
|
|
slot.timings_per_token = json_value(data, "timings_per_token", false); |
|
|
|
slot.params.stream = json_value(data, "stream", false); |
|
slot.params.cache_prompt = json_value(data, "cache_prompt", true); |
|
slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict)); |
|
slot.params.n_indent = json_value(data, "n_indent", defaults.n_indent); |
|
slot.params.n_keep = json_value(data, "n_keep", defaults.n_keep); |
|
slot.params.n_discard = json_value(data, "n_discard", defaults.n_discard); |
|
|
|
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms); |
|
|
|
slot.params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k); |
|
slot.params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p); |
|
slot.params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p); |
|
slot.params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability); |
|
slot.params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold); |
|
slot.params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p); |
|
slot.params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp); |
|
slot.params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range); |
|
slot.params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent); |
|
slot.params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n); |
|
slot.params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat); |
|
slot.params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq); |
|
slot.params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present); |
|
slot.params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier); |
|
slot.params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base); |
|
slot.params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length); |
|
slot.params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n); |
|
slot.params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat); |
|
slot.params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau); |
|
slot.params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta); |
|
slot.params.sampling.penalize_nl = json_value(data, "penalize_nl", defaults.sampling.penalize_nl); |
|
slot.params.sampling.seed = json_value(data, "seed", defaults.sampling.seed); |
|
slot.params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs); |
|
slot.params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep); |
|
|
|
slot.params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min); |
|
slot.params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max); |
|
slot.params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min); |
|
|
|
slot.params.speculative.n_min = std::min(slot.params.speculative.n_max, slot.params.speculative.n_min); |
|
|
|
if (slot.params.sampling.dry_base < 1.0f) { |
|
slot.params.sampling.dry_base = defaults.sampling.dry_base; |
|
} |
|
|
|
|
|
{ |
|
|
|
|
|
|
|
if (data.contains("dry_sequence_breakers")) { |
|
slot.params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>()); |
|
if (slot.params.sampling.dry_sequence_breakers.empty()) { |
|
send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) { |
|
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST); |
|
return false; |
|
} |
|
if (data.contains("json_schema") && !data.contains("grammar")) { |
|
try { |
|
auto schema = json_value(data, "json_schema", json::object()); |
|
slot.params.sampling.grammar = json_schema_to_grammar(schema); |
|
} catch (const std::exception & e) { |
|
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST); |
|
return false; |
|
} |
|
} else { |
|
slot.params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar); |
|
} |
|
|
|
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) { |
|
|
|
slot.params.n_predict = slot.n_predict; |
|
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict); |
|
} |
|
|
|
{ |
|
slot.params.sampling.logit_bias.clear(); |
|
|
|
if (json_value(data, "ignore_eos", false) && has_eos_token) { |
|
slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY}); |
|
} |
|
|
|
const auto & logit_bias = data.find("logit_bias"); |
|
if (logit_bias != data.end() && logit_bias->is_array()) { |
|
const int n_vocab = llama_n_vocab(model); |
|
for (const auto & el : *logit_bias) { |
|
|
|
if (el.is_array() && el.size() == 2) { |
|
float bias; |
|
if (el[1].is_number()) { |
|
bias = el[1].get<float>(); |
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) { |
|
bias = -INFINITY; |
|
} else { |
|
continue; |
|
} |
|
|
|
if (el[0].is_number_integer()) { |
|
llama_token tok = el[0].get<llama_token>(); |
|
if (tok >= 0 && tok < n_vocab) { |
|
slot.params.sampling.logit_bias.push_back({tok, bias}); |
|
} |
|
} else if (el[0].is_string()) { |
|
auto toks = common_tokenize(model, el[0].get<std::string>(), false); |
|
for (auto tok : toks) { |
|
slot.params.sampling.logit_bias.push_back({tok, bias}); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
{ |
|
slot.params.antiprompt.clear(); |
|
|
|
const auto & stop = data.find("stop"); |
|
if (stop != data.end() && stop->is_array()) { |
|
for (const auto & word : *stop) { |
|
if (!word.empty()) { |
|
slot.params.antiprompt.push_back(word); |
|
} |
|
} |
|
} |
|
} |
|
|
|
{ |
|
const auto & samplers = data.find("samplers"); |
|
if (samplers != data.end()) { |
|
if (samplers->is_array()) { |
|
std::vector<std::string> sampler_names; |
|
for (const auto & name : *samplers) { |
|
if (name.is_string()) { |
|
sampler_names.emplace_back(name); |
|
} |
|
} |
|
slot.params.sampling.samplers = common_sampler_types_from_names(sampler_names, false); |
|
} else if (samplers->is_string()){ |
|
std::string sampler_string; |
|
for (const auto & name : *samplers) { |
|
sampler_string += name; |
|
} |
|
slot.params.sampling.samplers = common_sampler_types_from_chars(sampler_string); |
|
} |
|
} else { |
|
slot.params.sampling.samplers = defaults.sampling.samplers; |
|
} |
|
} |
|
|
|
{ |
|
if (slot.smpl != nullptr) { |
|
common_sampler_free(slot.smpl); |
|
} |
|
|
|
slot.smpl = common_sampler_init(model, slot.params.sampling); |
|
if (slot.smpl == nullptr) { |
|
|
|
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); |
|
return false; |
|
} |
|
} |
|
|
|
if (slot.ctx_dft) { |
|
llama_batch_free(slot.batch_spec); |
|
|
|
slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1); |
|
} |
|
|
|
slot.state = SLOT_STATE_STARTED; |
|
|
|
SLT_INF(slot, "%s", "processing task\n"); |
|
|
|
return true; |
|
} |
|
|
|
void kv_cache_clear() { |
|
SRV_DBG("%s", "clearing KV cache\n"); |
|
|
|
|
|
llama_kv_cache_clear(ctx); |
|
clean_kv_cache = false; |
|
} |
|
|
|
bool process_token(completion_token_output & result, server_slot & slot) { |
|
|
|
const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special); |
|
slot.sampled = result.tok; |
|
|
|
|
|
slot.generated_text += token_str; |
|
slot.has_next_token = true; |
|
|
|
|
|
bool incomplete = false; |
|
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) { |
|
unsigned char c = slot.generated_text[slot.generated_text.size() - i]; |
|
if ((c & 0xC0) == 0x80) { |
|
|
|
continue; |
|
} |
|
if ((c & 0xE0) == 0xC0) { |
|
|
|
incomplete = i < 2; |
|
} else if ((c & 0xF0) == 0xE0) { |
|
|
|
incomplete = i < 3; |
|
} else if ((c & 0xF8) == 0xF0) { |
|
|
|
incomplete = i < 4; |
|
} |
|
|
|
break; |
|
} |
|
|
|
if (!incomplete) { |
|
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); |
|
|
|
const std::string str_test = slot.generated_text.substr(pos); |
|
bool send_text = true; |
|
|
|
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL); |
|
if (stop_pos != std::string::npos) { |
|
slot.generated_text.erase( |
|
slot.generated_text.begin() + pos + stop_pos, |
|
slot.generated_text.end()); |
|
pos = std::min(slot.n_sent_text, slot.generated_text.size()); |
|
} else if (slot.has_next_token) { |
|
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL); |
|
send_text = stop_pos == std::string::npos; |
|
} |
|
|
|
|
|
if (send_text) { |
|
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos); |
|
slot.n_sent_text += result.text_to_send.size(); |
|
|
|
} |
|
|
|
slot.add_token(result); |
|
if (slot.params.stream) { |
|
send_partial_response(slot, result); |
|
} |
|
} |
|
|
|
if (incomplete) { |
|
slot.has_next_token = true; |
|
} |
|
|
|
|
|
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) { |
|
slot.stopped_limit = true; |
|
slot.has_next_token = false; |
|
|
|
SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict); |
|
} |
|
|
|
if (slot.has_new_line) { |
|
|
|
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) { |
|
slot.stopped_limit = true; |
|
slot.has_next_token = false; |
|
|
|
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms); |
|
} |
|
|
|
|
|
if (slot.params.n_indent > 0) { |
|
|
|
|
|
if (slot.last_nl_pos > 0) { |
|
size_t pos = slot.last_nl_pos; |
|
|
|
int n_indent = 0; |
|
while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) { |
|
n_indent++; |
|
pos++; |
|
} |
|
|
|
if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) { |
|
slot.stopped_limit = true; |
|
slot.has_next_token = false; |
|
|
|
|
|
slot.generated_text.erase(pos, std::string::npos); |
|
|
|
SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent); |
|
} |
|
} |
|
|
|
|
|
{ |
|
const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos); |
|
|
|
if (pos != std::string::npos) { |
|
slot.last_nl_pos = pos + 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
if (result.text_to_send.find('\n') != std::string::npos) { |
|
slot.has_new_line = true; |
|
} |
|
|
|
|
|
if (slot.n_past >= slot.n_ctx) { |
|
slot.truncated = true; |
|
slot.stopped_limit = true; |
|
slot.has_next_token = false; |
|
|
|
SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n", |
|
slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx); |
|
} |
|
|
|
if (llama_token_is_eog(model, result.tok)) { |
|
slot.stopped_eos = true; |
|
slot.has_next_token = false; |
|
|
|
SLT_DBG(slot, "%s", "stopped by EOS\n"); |
|
} |
|
|
|
const auto n_ctx_train = llama_n_ctx_train(model); |
|
|
|
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) { |
|
slot.truncated = true; |
|
slot.stopped_limit = true; |
|
slot.has_next_token = false; |
|
|
|
SLT_WRN(slot, |
|
"n_predict (%d) is set for infinite generation. " |
|
"Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n", |
|
slot.params.n_predict, n_ctx_train); |
|
} |
|
|
|
SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str()); |
|
|
|
return slot.has_next_token; |
|
} |
|
|
|
json get_formated_generation(const server_slot & slot) const { |
|
std::vector<std::string> samplers; |
|
samplers.reserve(slot.params.sampling.samplers.size()); |
|
for (const auto & sampler : slot.params.sampling.samplers) { |
|
samplers.emplace_back(common_sampler_type_to_str(sampler)); |
|
} |
|
|
|
return json { |
|
{"n_ctx", slot.n_ctx}, |
|
{"n_predict", slot.n_predict}, |
|
{"model", params_base.model_alias}, |
|
{"seed", slot.params.sampling.seed}, |
|
{"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0}, |
|
{"temperature", slot.params.sampling.temp}, |
|
{"dynatemp_range", slot.params.sampling.dynatemp_range}, |
|
{"dynatemp_exponent", slot.params.sampling.dynatemp_exponent}, |
|
{"top_k", slot.params.sampling.top_k}, |
|
{"top_p", slot.params.sampling.top_p}, |
|
{"min_p", slot.params.sampling.min_p}, |
|
{"xtc_probability", slot.params.sampling.xtc_probability}, |
|
{"xtc_threshold", slot.params.sampling.xtc_threshold}, |
|
{"typical_p", slot.params.sampling.typ_p}, |
|
{"repeat_last_n", slot.params.sampling.penalty_last_n}, |
|
{"repeat_penalty", slot.params.sampling.penalty_repeat}, |
|
{"presence_penalty", slot.params.sampling.penalty_present}, |
|
{"frequency_penalty", slot.params.sampling.penalty_freq}, |
|
{"dry_multiplier", slot.params.sampling.dry_multiplier}, |
|
{"dry_base", slot.params.sampling.dry_base}, |
|
{"dry_allowed_length", slot.params.sampling.dry_allowed_length}, |
|
{"dry_penalty_last_n", slot.params.sampling.dry_penalty_last_n}, |
|
{"dry_sequence_breakers", slot.params.sampling.dry_sequence_breakers}, |
|
{"mirostat", slot.params.sampling.mirostat}, |
|
{"mirostat_tau", slot.params.sampling.mirostat_tau}, |
|
{"mirostat_eta", slot.params.sampling.mirostat_eta}, |
|
{"penalize_nl", slot.params.sampling.penalize_nl}, |
|
{"stop", slot.params.antiprompt}, |
|
{"max_tokens", slot.params.n_predict}, |
|
{"n_keep", slot.params.n_keep}, |
|
{"n_discard", slot.params.n_discard}, |
|
{"ignore_eos", slot.params.sampling.ignore_eos}, |
|
{"stream", slot.params.stream}, |
|
|
|
{"n_probs", slot.params.sampling.n_probs}, |
|
{"min_keep", slot.params.sampling.min_keep}, |
|
{"grammar", slot.params.sampling.grammar}, |
|
{"samplers", samplers}, |
|
{"speculative", slot.can_speculate()}, |
|
{"speculative.n_max", slot.params.speculative.n_max}, |
|
{"speculative.n_min", slot.params.speculative.n_min}, |
|
{"speculative.p_min", slot.params.speculative.p_min}, |
|
{"timings_per_token", slot.timings_per_token}, |
|
}; |
|
} |
|
|
|
void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { |
|
send_error(task.id, error, type); |
|
} |
|
|
|
void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { |
|
send_error(slot.id_task, error, type); |
|
} |
|
|
|
void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { |
|
SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str()); |
|
|
|
server_task_result res; |
|
res.id = id_task; |
|
res.stop = false; |
|
res.error = true; |
|
res.data = format_error_response(error, type); |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
void send_partial_response(server_slot & slot, completion_token_output tkn) { |
|
server_task_result res; |
|
res.id = slot.id_task; |
|
res.error = false; |
|
res.stop = false; |
|
res.data = json { |
|
{"content", tkn.text_to_send}, |
|
{"stop", false}, |
|
{"id_slot", slot.id}, |
|
{"multimodal", false}, |
|
{"index", slot.index}, |
|
}; |
|
|
|
if (slot.params.sampling.n_probs > 0) { |
|
const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false); |
|
const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size()); |
|
const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size()); |
|
|
|
std::vector<completion_token_output> probs_output; |
|
if (probs_pos < probs_stop_pos) { |
|
probs_output = std::vector<completion_token_output>( |
|
slot.generated_token_probs.begin() + probs_pos, |
|
slot.generated_token_probs.begin() + probs_stop_pos); |
|
} |
|
slot.n_sent_token_probs = probs_stop_pos; |
|
|
|
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); |
|
} |
|
|
|
if (slot.oaicompat) { |
|
res.data["oaicompat_token_ctr"] = slot.n_decoded; |
|
res.data["model"] = slot.oaicompat_model; |
|
} |
|
|
|
if (slot.timings_per_token) { |
|
res.data["timings"] = slot.get_formated_timings(); |
|
} |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
void send_final_response(const server_slot & slot) { |
|
server_task_result res; |
|
res.id = slot.id_task; |
|
res.error = false; |
|
res.stop = true; |
|
res.data = json { |
|
{"content", !slot.params.stream ? slot.generated_text : ""}, |
|
{"id_slot", slot.id}, |
|
{"stop", true}, |
|
{"model", params_base.model_alias}, |
|
{"tokens_predicted", slot.n_decoded}, |
|
{"tokens_evaluated", slot.n_prompt_tokens}, |
|
{"generation_settings", get_formated_generation(slot)}, |
|
{"prompt", common_detokenize(ctx, slot.prompt_tokens)}, |
|
{"has_new_line", slot.has_new_line}, |
|
{"truncated", slot.truncated}, |
|
{"stopped_eos", slot.stopped_eos}, |
|
{"stopped_word", slot.stopped_word}, |
|
{"stopped_limit", slot.stopped_limit}, |
|
{"stopping_word", slot.stopping_word}, |
|
{"tokens_cached", slot.n_past}, |
|
{"timings", slot.get_formated_timings()}, |
|
{"index", slot.index}, |
|
}; |
|
|
|
if (slot.params.sampling.n_probs > 0) { |
|
std::vector<completion_token_output> probs; |
|
if (!slot.params.stream && slot.stopped_word) { |
|
const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false); |
|
|
|
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size()); |
|
probs = std::vector<completion_token_output>( |
|
slot.generated_token_probs.begin(), |
|
slot.generated_token_probs.end() - safe_offset); |
|
} else { |
|
probs = std::vector<completion_token_output>( |
|
slot.generated_token_probs.begin(), |
|
slot.generated_token_probs.end()); |
|
} |
|
|
|
res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs); |
|
} |
|
|
|
if (slot.oaicompat) { |
|
res.data["oaicompat_token_ctr"] = slot.n_decoded; |
|
res.data["model"] = slot.oaicompat_model; |
|
} |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
void send_embedding(const server_slot & slot, const llama_batch & batch) { |
|
server_task_result res; |
|
res.id = slot.id_task; |
|
res.error = false; |
|
res.stop = true; |
|
|
|
const int n_embd = llama_n_embd(model); |
|
|
|
std::vector<float> embd_res(n_embd, 0.0f); |
|
|
|
for (int i = 0; i < batch.n_tokens; ++i) { |
|
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { |
|
continue; |
|
} |
|
|
|
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); |
|
if (embd == NULL) { |
|
embd = llama_get_embeddings_ith(ctx, i); |
|
} |
|
|
|
if (embd == NULL) { |
|
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); |
|
|
|
res.data = json { |
|
{"embedding", std::vector<float>(n_embd, 0.0f)}, |
|
{"index", slot.index}, |
|
}; |
|
|
|
continue; |
|
} |
|
|
|
common_embd_normalize(embd, embd_res.data(), n_embd); |
|
|
|
res.data = json { |
|
{"embedding", embd_res}, |
|
{"index", slot.index}, |
|
}; |
|
} |
|
|
|
SLT_DBG(slot, "%s", "sending embeddings\n"); |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
void send_rerank(const server_slot & slot, const llama_batch & batch) { |
|
server_task_result res; |
|
res.id = slot.id_task; |
|
res.error = false; |
|
res.stop = true; |
|
|
|
for (int i = 0; i < batch.n_tokens; ++i) { |
|
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { |
|
continue; |
|
} |
|
|
|
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); |
|
if (embd == NULL) { |
|
embd = llama_get_embeddings_ith(ctx, i); |
|
} |
|
|
|
if (embd == NULL) { |
|
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); |
|
|
|
res.data = json { |
|
{"index", slot.index}, |
|
{"score", -1e6}, |
|
}; |
|
|
|
continue; |
|
} |
|
|
|
res.data = json { |
|
{"index", slot.index}, |
|
{"score", embd[0]}, |
|
}; |
|
} |
|
|
|
SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str()); |
|
|
|
queue_results.send(res); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<server_task> create_tasks_inference(json data, server_task_inf_type inf_type) { |
|
std::vector<server_task> tasks; |
|
auto create_task = [&](json & task_data, llama_tokens & prompt_tokens) { |
|
SRV_DBG("create task, n_tokens = %d\n", (int) prompt_tokens.size()); |
|
server_task task; |
|
task.id = queue_tasks.get_new_id(); |
|
task.inf_type = inf_type; |
|
task.type = SERVER_TASK_TYPE_INFERENCE; |
|
task.data = task_data; |
|
task.prompt_tokens = std::move(prompt_tokens); |
|
tasks.push_back(std::move(task)); |
|
}; |
|
|
|
static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts"; |
|
if (!data.contains("prompt")) { |
|
throw std::runtime_error(error_msg); |
|
} |
|
|
|
|
|
bool add_special = inf_type != SERVER_TASK_INF_TYPE_RERANK && inf_type != SERVER_TASK_INF_TYPE_INFILL; |
|
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx, data.at("prompt"), add_special, true); |
|
switch (inf_type) { |
|
case SERVER_TASK_INF_TYPE_RERANK: |
|
{ |
|
|
|
|
|
GGML_ASSERT(tokenized_prompts.size() > 1); |
|
SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) tokenized_prompts.size() - 1); |
|
for (size_t i = 1; i < tokenized_prompts.size(); i++) { |
|
data["index"] = i - 1; |
|
auto tokens = format_rerank(model, tokenized_prompts[0], tokenized_prompts[i]); |
|
create_task(data, tokens); |
|
} |
|
} break; |
|
case SERVER_TASK_INF_TYPE_INFILL: |
|
{ |
|
SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size()); |
|
for (size_t i = 0; i < tokenized_prompts.size(); i++) { |
|
data["index"] = i; |
|
auto tokens = format_infill( |
|
ctx, |
|
data.at("input_prefix"), |
|
data.at("input_suffix"), |
|
data.at("input_extra"), |
|
params_base.n_batch, |
|
params_base.n_predict, |
|
slots[0].n_ctx, |
|
params_base.spm_infill, |
|
tokenized_prompts[i] |
|
); |
|
create_task(data, tokens); |
|
} |
|
} break; |
|
default: |
|
{ |
|
SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) tokenized_prompts.size()); |
|
for (size_t i = 0; i < tokenized_prompts.size(); i++) { |
|
data["index"] = i; |
|
create_task(data, tokenized_prompts[i]); |
|
} |
|
} |
|
} |
|
|
|
return tasks; |
|
} |
|
|
|
void cancel_tasks(const std::unordered_set<int> & id_tasks) { |
|
std::vector<server_task> cancel_tasks; |
|
cancel_tasks.reserve(id_tasks.size()); |
|
for (const auto & id_task : id_tasks) { |
|
SRV_WRN("cancel task, id_task = %d\n", id_task); |
|
|
|
server_task task; |
|
task.type = SERVER_TASK_TYPE_CANCEL; |
|
task.id_target = id_task; |
|
cancel_tasks.push_back(task); |
|
queue_results.remove_waiting_task_id(id_task); |
|
} |
|
|
|
queue_tasks.post(cancel_tasks, true); |
|
} |
|
|
|
|
|
void receive_cmpl_results( |
|
const std::unordered_set<int> & id_tasks, |
|
const std::function<void(std::vector<server_task_result>&)> & result_handler, |
|
const std::function<void(json)> & error_handler) { |
|
|
|
std::vector<server_task_result> results(id_tasks.size()); |
|
for (size_t i = 0; i < id_tasks.size(); i++) { |
|
server_task_result result = queue_results.recv(id_tasks); |
|
|
|
if (result.error) { |
|
error_handler(result.data); |
|
cancel_tasks(id_tasks); |
|
return; |
|
} |
|
|
|
const size_t idx = result.data["index"]; |
|
GGML_ASSERT(idx < results.size() && "index out of range"); |
|
|
|
results[idx] = result; |
|
} |
|
result_handler(results); |
|
} |
|
|
|
|
|
void receive_cmpl_results_stream( |
|
const std::unordered_set<int> & id_tasks, const |
|
std::function<bool(server_task_result&)> & result_handler, const |
|
std::function<void(json)> & error_handler) { |
|
size_t n_finished = 0; |
|
while (true) { |
|
server_task_result result = queue_results.recv(id_tasks); |
|
if (!result_handler(result)) { |
|
cancel_tasks(id_tasks); |
|
break; |
|
} |
|
|
|
if (result.error) { |
|
error_handler(result.data); |
|
cancel_tasks(id_tasks); |
|
break; |
|
} |
|
|
|
if (result.stop) { |
|
if (++n_finished == id_tasks.size()) { |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
void process_single_task(server_task task) { |
|
switch (task.type) { |
|
case SERVER_TASK_TYPE_INFERENCE: |
|
{ |
|
const int id_slot = json_value(task.data, "id_slot", -1); |
|
|
|
server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task); |
|
|
|
if (slot == nullptr) { |
|
|
|
SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id); |
|
queue_tasks.defer(task); |
|
break; |
|
} |
|
if (slot->is_processing()) { |
|
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); |
|
queue_tasks.defer(task); |
|
break; |
|
} |
|
|
|
slot->reset(); |
|
|
|
slot->id_task = task.id; |
|
slot->inf_type = task.inf_type; |
|
slot->index = json_value(task.data, "index", 0); |
|
slot->prompt_tokens = std::move(task.prompt_tokens); |
|
|
|
if (!launch_slot_with_task(*slot, task)) { |
|
SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id); |
|
break; |
|
} |
|
} break; |
|
case SERVER_TASK_TYPE_CANCEL: |
|
{ |
|
|
|
for (auto & slot : slots) { |
|
if (slot.id_task == task.id_target) { |
|
slot.release(); |
|
break; |
|
} |
|
} |
|
} break; |
|
case SERVER_TASK_TYPE_NEXT_RESPONSE: |
|
{ |
|
|
|
} break; |
|
case SERVER_TASK_TYPE_METRICS: |
|
{ |
|
json slots_data = json::array(); |
|
|
|
int n_idle_slots = 0; |
|
int n_processing_slots = 0; |
|
|
|
for (server_slot & slot : slots) { |
|
json slot_data = get_formated_generation(slot); |
|
slot_data["id"] = slot.id; |
|
slot_data["id_task"] = slot.id_task; |
|
slot_data["is_processing"] = slot.is_processing(); |
|
slot_data["prompt"] = common_detokenize(ctx, slot.prompt_tokens); |
|
slot_data["next_token"] = { |
|
{"has_next_token", slot.has_next_token}, |
|
{"has_new_line", slot.has_new_line}, |
|
{"n_remain", slot.n_remaining}, |
|
{"n_decoded", slot.n_decoded}, |
|
{"stopped_eos", slot.stopped_eos}, |
|
{"stopped_word", slot.stopped_word}, |
|
{"stopped_limit", slot.stopped_limit}, |
|
{"stopping_word", slot.stopping_word}, |
|
}; |
|
|
|
if (slot.is_processing()) { |
|
n_processing_slots++; |
|
} else { |
|
n_idle_slots++; |
|
} |
|
|
|
slots_data.push_back(slot_data); |
|
} |
|
SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots); |
|
|
|
server_task_result res; |
|
res.id = task.id; |
|
res.stop = true; |
|
res.error = false; |
|
res.data = { |
|
{ "idle", n_idle_slots }, |
|
{ "processing", n_processing_slots }, |
|
{ "deferred", queue_tasks.queue_tasks_deferred.size() }, |
|
{ "t_start", metrics.t_start}, |
|
|
|
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total}, |
|
{ "t_tokens_generation_total", metrics.t_tokens_generation_total}, |
|
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total}, |
|
{ "t_prompt_processing_total", metrics.t_prompt_processing_total}, |
|
|
|
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed}, |
|
{ "t_prompt_processing", metrics.t_prompt_processing}, |
|
{ "n_tokens_predicted", metrics.n_tokens_predicted}, |
|
{ "t_tokens_generation", metrics.t_tokens_generation}, |
|
|
|
{ "n_decode_total", metrics.n_decode_total}, |
|
{ "n_busy_slots_total", metrics.n_busy_slots_total}, |
|
|
|
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)}, |
|
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)}, |
|
|
|
{ "slots", slots_data }, |
|
}; |
|
|
|
if (json_value(task.data, "reset_bucket", false)) { |
|
metrics.reset_bucket(); |
|
} |
|
queue_results.send(res); |
|
} break; |
|
case SERVER_TASK_TYPE_SLOT_SAVE: |
|
{ |
|
int id_slot = task.data.at("id_slot"); |
|
server_slot * slot = get_slot_by_id(id_slot); |
|
if (slot == nullptr) { |
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); |
|
break; |
|
} |
|
if (slot->is_processing()) { |
|
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); |
|
queue_tasks.defer(task); |
|
break; |
|
} |
|
|
|
const size_t token_count = slot->cache_tokens.size(); |
|
const int64_t t_start = ggml_time_us(); |
|
|
|
std::string filename = task.data.at("filename"); |
|
std::string filepath = task.data.at("filepath"); |
|
|
|
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count); |
|
|
|
const int64_t t_end = ggml_time_us(); |
|
const double t_save_ms = (t_end - t_start) / 1000.0; |
|
|
|
server_task_result result; |
|
result.id = task.id; |
|
result.stop = true; |
|
result.error = false; |
|
result.data = json { |
|
{ "id_slot", id_slot }, |
|
{ "filename", filename }, |
|
{ "n_saved", token_count }, |
|
{ "n_written", nwrite }, |
|
{ "timings", { |
|
{ "save_ms", t_save_ms } |
|
} } |
|
}; |
|
queue_results.send(result); |
|
} break; |
|
case SERVER_TASK_TYPE_SLOT_RESTORE: |
|
{ |
|
int id_slot = task.data.at("id_slot"); |
|
server_slot * slot = get_slot_by_id(id_slot); |
|
if (slot == nullptr) { |
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); |
|
break; |
|
} |
|
if (slot->is_processing()) { |
|
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); |
|
queue_tasks.defer(task); |
|
break; |
|
} |
|
|
|
const int64_t t_start = ggml_time_us(); |
|
|
|
std::string filename = task.data.at("filename"); |
|
std::string filepath = task.data.at("filepath"); |
|
|
|
slot->cache_tokens.resize(slot->n_ctx); |
|
size_t token_count = 0; |
|
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count); |
|
if (nread == 0) { |
|
slot->cache_tokens.resize(0); |
|
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST); |
|
break; |
|
} |
|
slot->cache_tokens.resize(token_count); |
|
|
|
const int64_t t_end = ggml_time_us(); |
|
const double t_restore_ms = (t_end - t_start) / 1000.0; |
|
|
|
server_task_result result; |
|
result.id = task.id; |
|
result.stop = true; |
|
result.error = false; |
|
result.data = json { |
|
{ "id_slot", id_slot }, |
|
{ "filename", filename }, |
|
{ "n_restored", token_count }, |
|
{ "n_read", nread }, |
|
{ "timings", { |
|
{ "restore_ms", t_restore_ms } |
|
} } |
|
}; |
|
queue_results.send(result); |
|
} break; |
|
case SERVER_TASK_TYPE_SLOT_ERASE: |
|
{ |
|
int id_slot = task.data.at("id_slot"); |
|
server_slot * slot = get_slot_by_id(id_slot); |
|
if (slot == nullptr) { |
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); |
|
break; |
|
} |
|
if (slot->is_processing()) { |
|
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); |
|
queue_tasks.defer(task); |
|
break; |
|
} |
|
|
|
|
|
const size_t n_erased = slot->cache_tokens.size(); |
|
llama_kv_cache_seq_rm(ctx, slot->id, -1, -1); |
|
slot->cache_tokens.clear(); |
|
|
|
server_task_result result; |
|
result.id = task.id; |
|
result.stop = true; |
|
result.error = false; |
|
result.data = json { |
|
{ "id_slot", id_slot }, |
|
{ "n_erased", n_erased } |
|
}; |
|
queue_results.send(result); |
|
} break; |
|
case SERVER_TASK_TYPE_SET_LORA: |
|
{ |
|
common_lora_adapters_apply(ctx, loras); |
|
server_task_result result; |
|
result.id = task.id; |
|
result.stop = true; |
|
result.error = false; |
|
result.data = json{{ "success", true }}; |
|
queue_results.send(result); |
|
} break; |
|
} |
|
} |
|
|
|
void update_slots() { |
|
|
|
{ |
|
bool all_idle = true; |
|
|
|
for (auto & slot : slots) { |
|
if (slot.is_processing()) { |
|
all_idle = false; |
|
break; |
|
} |
|
} |
|
|
|
if (all_idle) { |
|
SRV_INF("%s", "all slots are idle\n"); |
|
if (clean_kv_cache) { |
|
kv_cache_clear(); |
|
} |
|
|
|
return; |
|
} |
|
} |
|
|
|
{ |
|
SRV_DBG("%s", "posting NEXT_RESPONSE\n"); |
|
|
|
server_task task; |
|
task.type = SERVER_TASK_TYPE_NEXT_RESPONSE; |
|
task.id_target = -1; |
|
|
|
queue_tasks.post(task); |
|
} |
|
|
|
|
|
|
|
for (server_slot & slot : slots) { |
|
if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) { |
|
if (!params_base.ctx_shift) { |
|
|
|
|
|
slot.release(); |
|
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER); |
|
continue; |
|
} |
|
|
|
|
|
const int n_keep = slot.params.n_keep + add_bos_token; |
|
const int n_left = slot.n_past - n_keep; |
|
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2); |
|
|
|
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard); |
|
|
|
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard); |
|
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard); |
|
|
|
if (slot.params.cache_prompt) { |
|
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) { |
|
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i]; |
|
} |
|
|
|
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard); |
|
} |
|
|
|
slot.n_past -= n_discard; |
|
|
|
slot.truncated = true; |
|
} |
|
} |
|
|
|
|
|
common_batch_clear(batch); |
|
|
|
|
|
for (auto & slot : slots) { |
|
if (slot.state != SLOT_STATE_GENERATING) { |
|
continue; |
|
} |
|
|
|
slot.i_batch = batch.n_tokens; |
|
|
|
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true); |
|
|
|
slot.n_past += 1; |
|
|
|
if (slot.params.cache_prompt) { |
|
slot.cache_tokens.push_back(slot.sampled); |
|
} |
|
|
|
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n", |
|
slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated); |
|
} |
|
|
|
|
|
int32_t n_batch = llama_n_batch(ctx); |
|
int32_t n_ubatch = llama_n_ubatch(ctx); |
|
|
|
|
|
|
|
|
|
|
|
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1; |
|
|
|
|
|
if (params_base.cont_batching || batch.n_tokens == 0) { |
|
for (auto & slot : slots) { |
|
|
|
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) { |
|
auto & prompt_tokens = slot.prompt_tokens; |
|
|
|
|
|
if (slot.state == SLOT_STATE_STARTED) { |
|
slot.t_start_process_prompt = ggml_time_us(); |
|
slot.t_start_generation = 0; |
|
|
|
slot.n_past = 0; |
|
slot.n_prompt_tokens = prompt_tokens.size(); |
|
slot.state = SLOT_STATE_PROCESSING_PROMPT; |
|
|
|
SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens); |
|
|
|
|
|
if (1) { |
|
|
|
for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) { |
|
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); |
|
} |
|
} else { |
|
|
|
for (int i = 0; i < (int) prompt_tokens.size(); i++) { |
|
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); |
|
} |
|
} |
|
|
|
|
|
if (prompt_tokens.empty()) { |
|
SLT_WRN(slot, "%s", "empty prompt - releasing slot\n"); |
|
|
|
slot.release(); |
|
slot.print_timings(); |
|
send_final_response(slot); |
|
continue; |
|
} |
|
|
|
if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) { |
|
if (slot.n_prompt_tokens > n_ubatch) { |
|
slot.release(); |
|
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER); |
|
continue; |
|
} |
|
|
|
if (slot.n_prompt_tokens > slot.n_ctx) { |
|
slot.release(); |
|
send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER); |
|
continue; |
|
} |
|
} else { |
|
if (!params_base.ctx_shift) { |
|
|
|
|
|
|
|
if (slot.n_prompt_tokens >= slot.n_ctx) { |
|
slot.release(); |
|
send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST); |
|
continue; |
|
} |
|
} |
|
if (slot.params.n_keep < 0) { |
|
slot.params.n_keep = slot.n_prompt_tokens; |
|
} |
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); |
|
|
|
|
|
if (slot.n_prompt_tokens >= slot.n_ctx) { |
|
const int n_left = slot.n_ctx - slot.params.n_keep; |
|
|
|
const int n_block_size = n_left / 2; |
|
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; |
|
|
|
llama_tokens new_tokens( |
|
prompt_tokens.begin(), |
|
prompt_tokens.begin() + slot.params.n_keep); |
|
|
|
new_tokens.insert( |
|
new_tokens.end(), |
|
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, |
|
prompt_tokens.end()); |
|
|
|
prompt_tokens = std::move(new_tokens); |
|
|
|
slot.truncated = true; |
|
slot.n_prompt_tokens = prompt_tokens.size(); |
|
|
|
SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens); |
|
|
|
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx); |
|
} |
|
|
|
if (slot.params.cache_prompt) { |
|
|
|
slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens); |
|
|
|
|
|
if (params_base.n_cache_reuse > 0) { |
|
size_t head_c = slot.n_past; |
|
size_t head_p = slot.n_past; |
|
|
|
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past); |
|
|
|
while (head_c < slot.cache_tokens.size() && |
|
head_p < prompt_tokens.size()) { |
|
|
|
size_t n_match = 0; |
|
while (head_c + n_match < slot.cache_tokens.size() && |
|
head_p + n_match < prompt_tokens.size() && |
|
slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) { |
|
|
|
n_match++; |
|
} |
|
|
|
if (n_match >= (size_t) params_base.n_cache_reuse) { |
|
SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match); |
|
|
|
|
|
|
|
|
|
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c; |
|
|
|
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c); |
|
llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift); |
|
|
|
for (size_t i = 0; i < n_match; i++) { |
|
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i]; |
|
slot.n_past++; |
|
} |
|
|
|
head_c += n_match; |
|
head_p += n_match; |
|
} else { |
|
head_c += 1; |
|
} |
|
} |
|
|
|
SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past); |
|
} |
|
} |
|
} |
|
|
|
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) { |
|
|
|
SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens); |
|
|
|
slot.n_past--; |
|
} |
|
|
|
slot.n_prompt_tokens_processed = 0; |
|
} |
|
|
|
|
|
if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) { |
|
|
|
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) { |
|
continue; |
|
} |
|
} |
|
|
|
|
|
const bool slot_type = |
|
slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || |
|
slot.inf_type == SERVER_TASK_INF_TYPE_RERANK ? 1 : 0; |
|
|
|
if (batch_type == -1) { |
|
batch_type = slot_type; |
|
} else if (batch_type != slot_type) { |
|
continue; |
|
} |
|
|
|
|
|
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) { |
|
|
|
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1); |
|
|
|
|
|
slot.n_past = 0; |
|
} |
|
|
|
SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past); |
|
|
|
|
|
slot.cache_tokens.resize(slot.n_past); |
|
|
|
|
|
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) { |
|
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false); |
|
|
|
if (slot.params.cache_prompt) { |
|
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]); |
|
} |
|
|
|
slot.n_prompt_tokens_processed++; |
|
slot.n_past++; |
|
} |
|
|
|
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens); |
|
|
|
|
|
if (slot.n_past == slot.n_prompt_tokens) { |
|
slot.state = SLOT_STATE_DONE_PROMPT; |
|
|
|
GGML_ASSERT(batch.n_tokens > 0); |
|
|
|
common_sampler_reset(slot.smpl); |
|
|
|
|
|
for (int i = 0; i < slot.n_prompt_tokens; ++i) { |
|
common_sampler_accept(slot.smpl, prompt_tokens[i], false); |
|
} |
|
|
|
|
|
batch.logits[batch.n_tokens - 1] = true; |
|
|
|
slot.n_decoded = 0; |
|
slot.i_batch = batch.n_tokens - 1; |
|
|
|
SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens); |
|
} |
|
} |
|
|
|
if (batch.n_tokens >= n_batch) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (batch.n_tokens == 0) { |
|
SRV_WRN("%s", "no tokens to decode\n"); |
|
return; |
|
} |
|
|
|
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens); |
|
|
|
|
|
llama_set_embeddings(ctx, batch_type == 1); |
|
|
|
|
|
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { |
|
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); |
|
|
|
llama_batch batch_view = { |
|
n_tokens, |
|
batch.token + i, |
|
nullptr, |
|
batch.pos + i, |
|
batch.n_seq_id + i, |
|
batch.seq_id + i, |
|
batch.logits + i, |
|
}; |
|
|
|
const int ret = llama_decode(ctx, batch_view); |
|
metrics.on_decoded(slots); |
|
|
|
if (ret != 0) { |
|
if (n_batch == 1 || ret < 0) { |
|
|
|
SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); |
|
for (auto & slot : slots) { |
|
slot.release(); |
|
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size."); |
|
} |
|
break; |
|
} |
|
|
|
|
|
n_batch /= 2; |
|
i -= n_batch; |
|
|
|
SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); |
|
|
|
continue; |
|
} |
|
|
|
for (auto & slot : slots) { |
|
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { |
|
continue; |
|
} |
|
|
|
if (slot.state == SLOT_STATE_DONE_PROMPT) { |
|
if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING) { |
|
|
|
send_embedding(slot, batch_view); |
|
slot.release(); |
|
slot.i_batch = -1; |
|
continue; |
|
} |
|
|
|
if (slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) { |
|
send_rerank(slot, batch_view); |
|
slot.release(); |
|
slot.i_batch = -1; |
|
continue; |
|
} |
|
|
|
|
|
slot.state = SLOT_STATE_GENERATING; |
|
} else if (slot.state != SLOT_STATE_GENERATING) { |
|
continue; |
|
} |
|
|
|
llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i); |
|
|
|
slot.i_batch = -1; |
|
|
|
common_sampler_accept(slot.smpl, id, true); |
|
|
|
slot.n_decoded += 1; |
|
|
|
const int64_t t_current = ggml_time_us(); |
|
|
|
if (slot.n_decoded == 1) { |
|
slot.t_start_generation = t_current; |
|
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3; |
|
metrics.on_prompt_eval(slot); |
|
} |
|
|
|
slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3; |
|
|
|
completion_token_output result; |
|
result.tok = id; |
|
|
|
const auto * cur_p = common_sampler_get_candidates(slot.smpl); |
|
|
|
for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) { |
|
result.probs.push_back({ |
|
cur_p->data[i].id, |
|
i >= cur_p->size ? 0.0f : cur_p->data[i].p, |
|
}); |
|
} |
|
|
|
if (!process_token(result, slot)) { |
|
|
|
slot.release(); |
|
slot.print_timings(); |
|
send_final_response(slot); |
|
metrics.on_prediction(slot); |
|
continue; |
|
} |
|
} |
|
|
|
|
|
for (auto & slot : slots) { |
|
if (!slot.is_processing() || !slot.can_speculate()) { |
|
continue; |
|
} |
|
|
|
if (slot.state != SLOT_STATE_GENERATING) { |
|
continue; |
|
} |
|
|
|
llama_token id = slot.sampled; |
|
|
|
struct common_speculative_params params_spec; |
|
params_spec.n_draft = slot.params.speculative.n_max; |
|
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max; |
|
params_spec.p_min = slot.params.speculative.p_min; |
|
|
|
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id); |
|
|
|
|
|
if (slot.params.speculative.n_min > (int) draft.size()) { |
|
continue; |
|
} |
|
|
|
|
|
common_batch_clear(slot.batch_spec); |
|
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true); |
|
|
|
for (size_t i = 0; i < draft.size(); ++i) { |
|
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true); |
|
} |
|
|
|
llama_decode(ctx, slot.batch_spec); |
|
|
|
|
|
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft); |
|
|
|
slot.n_past += ids.size(); |
|
slot.n_decoded += ids.size(); |
|
|
|
slot.cache_tokens.push_back(id); |
|
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1); |
|
|
|
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1); |
|
|
|
for (size_t i = 0; i < ids.size(); ++i) { |
|
completion_token_output result; |
|
|
|
result.tok = ids[i]; |
|
|
|
if (!process_token(result, slot)) { |
|
|
|
slot.release(); |
|
slot.print_timings(); |
|
send_final_response(slot); |
|
metrics.on_prediction(slot); |
|
break; |
|
} |
|
} |
|
|
|
SRV_DBG("accepted %d/%d draft tokens\n", (int) ids.size() - 1, (int) draft.size()); |
|
} |
|
} |
|
|
|
SRV_DBG("%s", "run slots completed\n"); |
|
} |
|
|
|
json model_meta() const { |
|
return json { |
|
{"vocab_type", llama_vocab_type (model)}, |
|
{"n_vocab", llama_n_vocab (model)}, |
|
{"n_ctx_train", llama_n_ctx_train (model)}, |
|
{"n_embd", llama_n_embd (model)}, |
|
{"n_params", llama_model_n_params(model)}, |
|
{"size", llama_model_size (model)}, |
|
}; |
|
} |
|
}; |
|
|
|
static void log_server_request(const httplib::Request & req, const httplib::Response & res) { |
|
|
|
if (req.path == "/v1/health" || req.path == "/v1/completions") { |
|
return; |
|
} |
|
|
|
LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status); |
|
|
|
LOG_DBG("request: %s\n", req.body.c_str()); |
|
LOG_DBG("response: %s\n", res.body.c_str()); |
|
} |
|
|
|
std::function<void(int)> shutdown_handler; |
|
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT; |
|
|
|
inline void signal_handler(int signal) { |
|
if (is_terminating.test_and_set()) { |
|
|
|
|
|
fprintf(stderr, "Received second interrupt, terminating immediately.\n"); |
|
exit(1); |
|
} |
|
|
|
shutdown_handler(signal); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
|
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
|
|
|
|
const bool verbose = params.verbosity > 9; |
|
|
|
|
|
server_context ctx_server; |
|
|
|
if (params.model_alias == "unknown") { |
|
params.model_alias = params.model; |
|
} |
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency()); |
|
LOG_INF("\n"); |
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); |
|
LOG_INF("\n"); |
|
|
|
|
|
std::map<std::string, server_static_file> static_files = { |
|
{ "/", { index_html, index_html_len, "text/html; charset=utf-8" }}, |
|
{ "/completion.js", { completion_js, completion_js_len, "text/javascript; charset=utf-8" }}, |
|
{ "/deps_daisyui.min.css", { deps_daisyui_min_css, deps_daisyui_min_css_len, "text/css; charset=utf-8" }}, |
|
{ "/deps_markdown-it.js", { deps_markdown_it_js, deps_markdown_it_js_len, "text/javascript; charset=utf-8" }}, |
|
{ "/deps_tailwindcss.js", { deps_tailwindcss_js, deps_tailwindcss_js_len, "text/javascript; charset=utf-8" }}, |
|
{ "/deps_vue.esm-browser.js", { deps_vue_esm_browser_js, deps_vue_esm_browser_js_len, "text/javascript; charset=utf-8" }}, |
|
}; |
|
|
|
std::unique_ptr<httplib::Server> svr; |
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT |
|
if (params.ssl_file_key != "" && params.ssl_file_cert != "") { |
|
LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str()); |
|
svr.reset( |
|
new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str()) |
|
); |
|
} else { |
|
LOG_INF("Running without SSL\n"); |
|
svr.reset(new httplib::Server()); |
|
} |
|
#else |
|
if (params.ssl_file_key != "" && params.ssl_file_cert != "") { |
|
LOG_ERR("Server is built without SSL support\n"); |
|
return 1; |
|
} |
|
svr.reset(new httplib::Server()); |
|
#endif |
|
|
|
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL}; |
|
|
|
svr->set_default_headers({{"Server", "llama.cpp"}}); |
|
svr->set_logger(log_server_request); |
|
|
|
auto res_error = [](httplib::Response & res, const json & error_data) { |
|
json final_response {{"error", error_data}}; |
|
res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); |
|
res.status = json_value(error_data, "code", 500); |
|
}; |
|
|
|
auto res_ok = [](httplib::Response & res, const json & data) { |
|
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); |
|
res.status = 200; |
|
}; |
|
|
|
svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) { |
|
std::string message; |
|
try { |
|
std::rethrow_exception(ep); |
|
} catch (std::exception & e) { |
|
message = e.what(); |
|
} catch (...) { |
|
message = "Unknown Exception"; |
|
} |
|
|
|
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER); |
|
LOG_WRN("got exception: %s\n", formatted_error.dump().c_str()); |
|
res_error(res, formatted_error); |
|
}); |
|
|
|
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) { |
|
if (res.status == 404) { |
|
res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND)); |
|
} |
|
|
|
}); |
|
|
|
|
|
svr->set_read_timeout (params.timeout_read); |
|
svr->set_write_timeout(params.timeout_write); |
|
|
|
std::unordered_map<std::string, std::string> log_data; |
|
|
|
log_data["hostname"] = params.hostname; |
|
log_data["port"] = std::to_string(params.port); |
|
|
|
if (params.api_keys.size() == 1) { |
|
auto key = params.api_keys[0]; |
|
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0)); |
|
} else if (params.api_keys.size() > 1) { |
|
log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded"; |
|
} |
|
|
|
|
|
ctx_server.slot_prompt_similarity = params.slot_prompt_similarity; |
|
|
|
|
|
|
|
|
|
|
|
auto middleware_validate_api_key = [¶ms, &res_error, &static_files](const httplib::Request & req, httplib::Response & res) { |
|
static const std::unordered_set<std::string> public_endpoints = { |
|
"/health", |
|
"/models", |
|
"/v1/models", |
|
}; |
|
|
|
|
|
if (params.api_keys.empty()) { |
|
return true; |
|
} |
|
|
|
|
|
if (public_endpoints.find(req.path) != public_endpoints.end() || static_files.find(req.path) != static_files.end()) { |
|
return true; |
|
} |
|
|
|
|
|
auto auth_header = req.get_header_value("Authorization"); |
|
|
|
std::string prefix = "Bearer "; |
|
if (auth_header.substr(0, prefix.size()) == prefix) { |
|
std::string received_api_key = auth_header.substr(prefix.size()); |
|
if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) { |
|
return true; |
|
} |
|
} |
|
|
|
|
|
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION)); |
|
|
|
LOG_WRN("Unauthorized: Invalid API Key\n"); |
|
|
|
return false; |
|
}; |
|
|
|
auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) { |
|
server_state current_state = state.load(); |
|
if (current_state == SERVER_STATE_LOADING_MODEL) { |
|
auto tmp = string_split<std::string>(req.path, '.'); |
|
if (req.path == "/" || tmp.back() == "html") { |
|
res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8"); |
|
res.status = 503; |
|
} else { |
|
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); |
|
} |
|
return false; |
|
} |
|
return true; |
|
}; |
|
|
|
|
|
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) { |
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); |
|
|
|
if (req.method == "OPTIONS") { |
|
res.set_header("Access-Control-Allow-Credentials", "true"); |
|
res.set_header("Access-Control-Allow-Methods", "GET, POST"); |
|
res.set_header("Access-Control-Allow-Headers", "*"); |
|
res.set_content("", "text/html"); |
|
return httplib::Server::HandlerResponse::Handled; |
|
} |
|
if (!middleware_server_state(req, res)) { |
|
return httplib::Server::HandlerResponse::Handled; |
|
} |
|
if (!middleware_validate_api_key(req, res)) { |
|
return httplib::Server::HandlerResponse::Handled; |
|
} |
|
return httplib::Server::HandlerResponse::Unhandled; |
|
}); |
|
|
|
|
|
|
|
|
|
|
|
const auto handle_health = [&](const httplib::Request &, httplib::Response & res) { |
|
|
|
json health = {{"status", "ok"}}; |
|
res_ok(res, health); |
|
}; |
|
|
|
const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) { |
|
if (!params.endpoint_slots) { |
|
res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
|
|
server_task task; |
|
task.id = ctx_server.queue_tasks.get_new_id(); |
|
task.type = SERVER_TASK_TYPE_METRICS; |
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id); |
|
ctx_server.queue_tasks.post(task, true); |
|
|
|
|
|
server_task_result result = ctx_server.queue_results.recv(task.id); |
|
ctx_server.queue_results.remove_waiting_task_id(task.id); |
|
|
|
|
|
const int n_idle_slots = result.data.at("idle"); |
|
if (req.has_param("fail_on_no_slot")) { |
|
if (n_idle_slots == 0) { |
|
res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); |
|
return; |
|
} |
|
} |
|
|
|
res_ok(res, result.data.at("slots")); |
|
}; |
|
|
|
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) { |
|
if (!params.endpoint_metrics) { |
|
res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
|
|
server_task task; |
|
task.id = ctx_server.queue_tasks.get_new_id(); |
|
task.id_target = -1; |
|
task.type = SERVER_TASK_TYPE_METRICS; |
|
task.data.push_back({{"reset_bucket", true}}); |
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id); |
|
ctx_server.queue_tasks.post(task, true); |
|
|
|
|
|
server_task_result result = ctx_server.queue_results.recv(task.id); |
|
ctx_server.queue_results.remove_waiting_task_id(task.id); |
|
|
|
json data = result.data; |
|
|
|
const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed"); |
|
const uint64_t t_prompt_processing = data.at("t_prompt_processing"); |
|
|
|
const uint64_t n_tokens_predicted = data.at("n_tokens_predicted"); |
|
const uint64_t t_tokens_generation = data.at("t_tokens_generation"); |
|
|
|
const uint64_t n_decode_total = data.at("n_decode_total"); |
|
const uint64_t n_busy_slots_total = data.at("n_busy_slots_total"); |
|
|
|
const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells"); |
|
|
|
|
|
json all_metrics_def = json { |
|
{"counter", {{ |
|
{"name", "prompt_tokens_total"}, |
|
{"help", "Number of prompt tokens processed."}, |
|
{"value", (uint64_t) data.at("n_prompt_tokens_processed_total")} |
|
}, { |
|
{"name", "prompt_seconds_total"}, |
|
{"help", "Prompt process time"}, |
|
{"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3} |
|
}, { |
|
{"name", "tokens_predicted_total"}, |
|
{"help", "Number of generation tokens processed."}, |
|
{"value", (uint64_t) data.at("n_tokens_predicted_total")} |
|
}, { |
|
{"name", "tokens_predicted_seconds_total"}, |
|
{"help", "Predict process time"}, |
|
{"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3} |
|
}, { |
|
{"name", "n_decode_total"}, |
|
{"help", "Total number of llama_decode() calls"}, |
|
{"value", n_decode_total} |
|
}, { |
|
{"name", "n_busy_slots_per_decode"}, |
|
{"help", "Average number of busy slots per llama_decode() call"}, |
|
{"value", (float) n_busy_slots_total / (float) n_decode_total} |
|
}}}, |
|
{"gauge", {{ |
|
{"name", "prompt_tokens_seconds"}, |
|
{"help", "Average prompt throughput in tokens/s."}, |
|
{"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.} |
|
},{ |
|
{"name", "predicted_tokens_seconds"}, |
|
{"help", "Average generation throughput in tokens/s."}, |
|
{"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.} |
|
},{ |
|
{"name", "kv_cache_usage_ratio"}, |
|
{"help", "KV-cache usage. 1 means 100 percent usage."}, |
|
{"value", 1. * kv_cache_used_cells / params.n_ctx} |
|
},{ |
|
{"name", "kv_cache_tokens"}, |
|
{"help", "KV-cache tokens."}, |
|
{"value", (uint64_t) data.at("kv_cache_tokens_count")} |
|
},{ |
|
{"name", "requests_processing"}, |
|
{"help", "Number of request processing."}, |
|
{"value", (uint64_t) data.at("processing")} |
|
},{ |
|
{"name", "requests_deferred"}, |
|
{"help", "Number of request deferred."}, |
|
{"value", (uint64_t) data.at("deferred")} |
|
}}} |
|
}; |
|
|
|
std::stringstream prometheus; |
|
|
|
for (const auto & el : all_metrics_def.items()) { |
|
const auto & type = el.key(); |
|
const auto & metrics_def = el.value(); |
|
|
|
for (const auto & metric_def : metrics_def) { |
|
const std::string name = metric_def.at("name"); |
|
const std::string help = metric_def.at("help"); |
|
|
|
auto value = json_value(metric_def, "value", 0.); |
|
prometheus << "# HELP llamacpp:" << name << " " << help << "\n" |
|
<< "# TYPE llamacpp:" << name << " " << type << "\n" |
|
<< "llamacpp:" << name << " " << value << "\n"; |
|
} |
|
} |
|
|
|
const int64_t t_start = data.at("t_start"); |
|
res.set_header("Process-Start-Time-Unix", std::to_string(t_start)); |
|
|
|
res.set_content(prometheus.str(), "text/plain; version=0.0.4"); |
|
res.status = 200; |
|
}; |
|
|
|
const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) { |
|
json request_data = json::parse(req.body); |
|
std::string filename = request_data.at("filename"); |
|
if (!fs_validate_filename(filename)) { |
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
std::string filepath = params.slot_save_path + filename; |
|
|
|
server_task task; |
|
task.type = SERVER_TASK_TYPE_SLOT_SAVE; |
|
task.data = { |
|
{ "id_slot", id_slot }, |
|
{ "filename", filename }, |
|
{ "filepath", filepath }, |
|
}; |
|
|
|
const int id_task = ctx_server.queue_tasks.post(task); |
|
ctx_server.queue_results.add_waiting_task_id(id_task); |
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task); |
|
ctx_server.queue_results.remove_waiting_task_id(id_task); |
|
|
|
if (result.error) { |
|
res_error(res, result.data); |
|
} else { |
|
res_ok(res, result.data); |
|
} |
|
}; |
|
|
|
const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) { |
|
json request_data = json::parse(req.body); |
|
std::string filename = request_data.at("filename"); |
|
if (!fs_validate_filename(filename)) { |
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
std::string filepath = params.slot_save_path + filename; |
|
|
|
server_task task; |
|
task.type = SERVER_TASK_TYPE_SLOT_RESTORE; |
|
task.data = { |
|
{ "id_slot", id_slot }, |
|
{ "filename", filename }, |
|
{ "filepath", filepath }, |
|
}; |
|
|
|
const int id_task = ctx_server.queue_tasks.post(task); |
|
ctx_server.queue_results.add_waiting_task_id(id_task); |
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task); |
|
ctx_server.queue_results.remove_waiting_task_id(id_task); |
|
|
|
if (result.error) { |
|
res_error(res, result.data); |
|
} else { |
|
res_ok(res, result.data); |
|
} |
|
}; |
|
|
|
const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & , httplib::Response & res, int id_slot) { |
|
server_task task; |
|
task.type = SERVER_TASK_TYPE_SLOT_ERASE; |
|
task.data = { |
|
{ "id_slot", id_slot }, |
|
}; |
|
|
|
const int id_task = ctx_server.queue_tasks.post(task); |
|
ctx_server.queue_results.add_waiting_task_id(id_task); |
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task); |
|
ctx_server.queue_results.remove_waiting_task_id(id_task); |
|
|
|
if (result.error) { |
|
res_error(res, result.data); |
|
} else { |
|
res_ok(res, result.data); |
|
} |
|
}; |
|
|
|
const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) { |
|
if (params.slot_save_path.empty()) { |
|
res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
std::string id_slot_str = req.path_params.at("id_slot"); |
|
int id_slot; |
|
|
|
try { |
|
id_slot = std::stoi(id_slot_str); |
|
} catch (const std::exception &) { |
|
res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
|
|
std::string action = req.get_param_value("action"); |
|
|
|
if (action == "save") { |
|
handle_slots_save(req, res, id_slot); |
|
} else if (action == "restore") { |
|
handle_slots_restore(req, res, id_slot); |
|
} else if (action == "erase") { |
|
handle_slots_erase(req, res, id_slot); |
|
} else { |
|
res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST)); |
|
} |
|
}; |
|
|
|
const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { |
|
json data = { |
|
{ "default_generation_settings", ctx_server.default_generation_settings_for_props }, |
|
{ "total_slots", ctx_server.params_base.n_parallel }, |
|
{ "chat_template", llama_get_chat_template(ctx_server.model) }, |
|
}; |
|
|
|
res_ok(res, data); |
|
}; |
|
|
|
const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { |
|
if (!ctx_server.params_base.endpoint_props) { |
|
res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
json data = json::parse(req.body); |
|
|
|
|
|
|
|
res_ok(res, {{ "success", true }}); |
|
}; |
|
|
|
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_inf_type inf_type, json & data, httplib::Response & res) { |
|
if (ctx_server.params_base.embedding) { |
|
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, inf_type); |
|
ctx_server.queue_results.add_waiting_tasks(tasks); |
|
ctx_server.queue_tasks.post(tasks); |
|
|
|
bool stream = json_value(data, "stream", false); |
|
const auto task_ids = server_task::get_list_id(tasks); |
|
|
|
if (!stream) { |
|
ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) { |
|
if (results.size() == 1) { |
|
|
|
res_ok(res, results[0].data); |
|
} else { |
|
|
|
json arr = json::array(); |
|
for (const auto & res : results) { |
|
arr.push_back(res.data); |
|
} |
|
res_ok(res, arr); |
|
} |
|
}, [&](const json & error_data) { |
|
res_error(res, error_data); |
|
}); |
|
|
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids); |
|
} else { |
|
const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) { |
|
ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool { |
|
return server_sent_event(sink, "data", result.data); |
|
}, [&](const json & error_data) { |
|
server_sent_event(sink, "error", error_data); |
|
}); |
|
sink.done(); |
|
return false; |
|
}; |
|
|
|
auto on_complete = [task_ids, &ctx_server] (bool) { |
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids); |
|
}; |
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); |
|
} |
|
}; |
|
|
|
const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) { |
|
json data = json::parse(req.body); |
|
return handle_completions_generic(SERVER_TASK_INF_TYPE_COMPLETION, data, res); |
|
}; |
|
|
|
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) { |
|
|
|
std::string err; |
|
if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) { |
|
err += "prefix token is missing. "; |
|
} |
|
if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) { |
|
err += "suffix token is missing. "; |
|
} |
|
if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) { |
|
err += "middle token is missing. "; |
|
} |
|
if (!err.empty()) { |
|
res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
json data = json::parse(req.body); |
|
|
|
|
|
if (!data.contains("input_prefix")) { |
|
res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST)); |
|
} |
|
|
|
if (!data.contains("input_suffix")) { |
|
res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST)); |
|
} |
|
|
|
if (data.contains("input_extra") && !data.at("input_extra").is_array()) { |
|
res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
json input_extra = json_value(data, "input_extra", json::array()); |
|
for (const auto & chunk : input_extra) { |
|
|
|
if (!chunk.contains("text") || !chunk.at("text").is_string()) { |
|
res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
|
|
if (chunk.contains("filename") && !chunk.at("filename").is_string()) { |
|
res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
} |
|
data["input_extra"] = input_extra; |
|
|
|
return handle_completions_generic(SERVER_TASK_INF_TYPE_INFILL, data, res); |
|
}; |
|
|
|
|
|
const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) { |
|
if (ctx_server.params_base.embedding) { |
|
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template); |
|
|
|
std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, SERVER_TASK_INF_TYPE_COMPLETION); |
|
ctx_server.queue_results.add_waiting_tasks(tasks); |
|
ctx_server.queue_tasks.post(tasks); |
|
|
|
bool stream = json_value(data, "stream", false); |
|
const auto task_ids = server_task::get_list_id(tasks); |
|
const auto completion_id = gen_chatcmplid(); |
|
|
|
if (!stream) { |
|
ctx_server.receive_cmpl_results(task_ids, [&](const std::vector<server_task_result> & results) { |
|
|
|
json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, false, verbose); |
|
res_ok(res, result_oai); |
|
}, [&](const json & error_data) { |
|
res_error(res, error_data); |
|
}); |
|
|
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids); |
|
} else { |
|
const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) { |
|
ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool { |
|
std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id); |
|
for (auto & event_data : result_array) { |
|
if (event_data.empty()) { |
|
continue; |
|
} |
|
if (!server_sent_event(sink, "data", event_data)) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
}, [&](const json & error_data) { |
|
server_sent_event(sink, "error", error_data); |
|
}); |
|
static const std::string ev_done = "data: [DONE]\n\n"; |
|
sink.write(ev_done.data(), ev_done.size()); |
|
sink.done(); |
|
return true; |
|
}; |
|
|
|
auto on_complete = [task_ids, &ctx_server] (bool) { |
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids); |
|
}; |
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); |
|
} |
|
}; |
|
|
|
const auto handle_models = [¶ms, &ctx_server](const httplib::Request &, httplib::Response & res) { |
|
json models = { |
|
{"object", "list"}, |
|
{"data", { |
|
{ |
|
{"id", params.model_alias}, |
|
{"object", "model"}, |
|
{"created", std::time(0)}, |
|
{"owned_by", "llamacpp"}, |
|
{"meta", ctx_server.model_meta()} |
|
}, |
|
}} |
|
}; |
|
|
|
res.set_content(models.dump(), MIMETYPE_JSON); |
|
}; |
|
|
|
const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) { |
|
const json body = json::parse(req.body); |
|
|
|
json tokens_response = json::array(); |
|
if (body.count("content") != 0) { |
|
const bool add_special = json_value(body, "add_special", false); |
|
const bool with_pieces = json_value(body, "with_pieces", false); |
|
|
|
llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true); |
|
|
|
if (with_pieces) { |
|
for (const auto& token : tokens) { |
|
std::string piece = common_token_to_piece(ctx_server.ctx, token); |
|
json piece_json; |
|
|
|
|
|
if (is_valid_utf8(piece)) { |
|
piece_json = piece; |
|
} else { |
|
|
|
piece_json = json::array(); |
|
for (unsigned char c : piece) { |
|
piece_json.push_back(static_cast<int>(c)); |
|
} |
|
} |
|
|
|
tokens_response.push_back({ |
|
{"id", token}, |
|
{"piece", piece_json} |
|
}); |
|
} |
|
} else { |
|
tokens_response = tokens; |
|
} |
|
} |
|
|
|
const json data = format_tokenizer_response(tokens_response); |
|
res_ok(res, data); |
|
}; |
|
|
|
const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) { |
|
const json body = json::parse(req.body); |
|
|
|
std::string content; |
|
if (body.count("tokens") != 0) { |
|
const llama_tokens tokens = body.at("tokens"); |
|
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend()); |
|
} |
|
|
|
const json data = format_detokenized_response(content); |
|
res_ok(res, data); |
|
}; |
|
|
|
const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { |
|
const json body = json::parse(req.body); |
|
bool is_openai = false; |
|
|
|
|
|
json prompt; |
|
if (body.count("input") != 0) { |
|
is_openai = true; |
|
prompt = body.at("input"); |
|
} else if (body.count("content") != 0) { |
|
|
|
prompt = std::vector<std::string>{body.at("content")}; |
|
} else { |
|
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
|
|
|
|
json responses = json::array(); |
|
bool error = false; |
|
{ |
|
std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_EMBEDDING); |
|
ctx_server.queue_results.add_waiting_tasks(tasks); |
|
ctx_server.queue_tasks.post(tasks); |
|
|
|
|
|
std::unordered_set<int> task_ids = server_task::get_list_id(tasks); |
|
|
|
ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) { |
|
for (const auto & res : results) { |
|
responses.push_back(res.data); |
|
} |
|
}, [&](const json & error_data) { |
|
res_error(res, error_data); |
|
error = true; |
|
}); |
|
|
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids); |
|
} |
|
|
|
if (error) { |
|
return; |
|
} |
|
|
|
|
|
json root = is_openai |
|
? format_embeddings_response_oaicompat(body, responses) |
|
: responses[0]; |
|
res_ok(res, root); |
|
}; |
|
|
|
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { |
|
if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) { |
|
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED)); |
|
return; |
|
} |
|
|
|
const json body = json::parse(req.body); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
json query; |
|
if (body.count("query") == 1) { |
|
query = body.at("query"); |
|
if (!query.is_string()) { |
|
res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
} else { |
|
res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
|
|
std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>()); |
|
if (documents.empty()) { |
|
res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST)); |
|
return; |
|
} |
|
|
|
|
|
json prompt; |
|
prompt.push_back(query); |
|
for (const auto & doc : documents) { |
|
prompt.push_back(doc); |
|
} |
|
|
|
LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str()); |
|
|
|
|
|
json responses = json::array(); |
|
bool error = false; |
|
{ |
|
std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_RERANK); |
|
ctx_server.queue_results.add_waiting_tasks(tasks); |
|
ctx_server.queue_tasks.post(tasks); |
|
|
|
|
|
std::unordered_set<int> task_ids = server_task::get_list_id(tasks); |
|
|
|
ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) { |
|
for (const auto & res : results) { |
|
responses.push_back(res.data); |
|
} |
|
}, [&](const json & error_data) { |
|
res_error(res, error_data); |
|
error = true; |
|
}); |
|
} |
|
|
|
if (error) { |
|
return; |
|
} |
|
|
|
|
|
json root = format_response_rerank(body, responses); |
|
res_ok(res, root); |
|
}; |
|
|
|
const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { |
|
json result = json::array(); |
|
for (size_t i = 0; i < ctx_server.loras.size(); ++i) { |
|
auto & lora = ctx_server.loras[i]; |
|
result.push_back({ |
|
{"id", i}, |
|
{"path", lora.path}, |
|
{"scale", lora.scale}, |
|
}); |
|
} |
|
res_ok(res, result); |
|
res.status = 200; |
|
}; |
|
|
|
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) { |
|
const std::vector<json> body = json::parse(req.body); |
|
int max_idx = ctx_server.loras.size(); |
|
|
|
|
|
for (auto & lora : ctx_server.loras) { |
|
lora.scale = 0.0f; |
|
} |
|
|
|
|
|
for (auto entry : body) { |
|
int id = entry.at("id"); |
|
float scale = entry.at("scale"); |
|
if (0 <= id && id < max_idx) { |
|
ctx_server.loras[id].scale = scale; |
|
} else { |
|
throw std::runtime_error("invalid adapter id"); |
|
} |
|
} |
|
|
|
server_task task; |
|
task.type = SERVER_TASK_TYPE_SET_LORA; |
|
const int id_task = ctx_server.queue_tasks.post(task); |
|
ctx_server.queue_results.add_waiting_task_id(id_task); |
|
|
|
server_task_result result = ctx_server.queue_results.recv(id_task); |
|
ctx_server.queue_results.remove_waiting_task_id(id_task); |
|
|
|
res_ok(res, result.data); |
|
res.status = 200; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!params.public_path.empty()) { |
|
|
|
bool is_found = svr->set_mount_point("/", params.public_path); |
|
if (!is_found) { |
|
LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str()); |
|
return 1; |
|
} |
|
} else { |
|
|
|
for (const auto & it : static_files) { |
|
const server_static_file & static_file = it.second; |
|
svr->Get(it.first.c_str(), [&static_file](const httplib::Request &, httplib::Response & res) { |
|
res.set_content(reinterpret_cast<const char*>(static_file.data), static_file.size, static_file.mime_type); |
|
return false; |
|
}); |
|
} |
|
} |
|
|
|
|
|
svr->Get ("/health", handle_health); |
|
svr->Get ("/metrics", handle_metrics); |
|
svr->Get ("/props", handle_props); |
|
svr->Post("/props", handle_props_change); |
|
svr->Get ("/models", handle_models); |
|
svr->Get ("/v1/models", handle_models); |
|
svr->Post("/completion", handle_completions); |
|
svr->Post("/completions", handle_completions); |
|
svr->Post("/v1/completions", handle_completions); |
|
svr->Post("/chat/completions", handle_chat_completions); |
|
svr->Post("/v1/chat/completions", handle_chat_completions); |
|
svr->Post("/infill", handle_infill); |
|
svr->Post("/embedding", handle_embeddings); |
|
svr->Post("/embeddings", handle_embeddings); |
|
svr->Post("/v1/embeddings", handle_embeddings); |
|
svr->Post("/rerank", handle_rerank); |
|
svr->Post("/reranking", handle_rerank); |
|
svr->Post("/v1/rerank", handle_rerank); |
|
svr->Post("/v1/reranking", handle_rerank); |
|
svr->Post("/tokenize", handle_tokenize); |
|
svr->Post("/detokenize", handle_detokenize); |
|
|
|
svr->Get ("/lora-adapters", handle_lora_adapters_list); |
|
svr->Post("/lora-adapters", handle_lora_adapters_apply); |
|
|
|
svr->Get ("/slots", handle_slots); |
|
svr->Post("/slots/:id_slot", handle_slots_action); |
|
|
|
|
|
|
|
|
|
if (params.n_threads_http < 1) { |
|
|
|
params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1); |
|
} |
|
log_data["n_threads_http"] = std::to_string(params.n_threads_http); |
|
svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); }; |
|
|
|
|
|
auto clean_up = [&svr]() { |
|
svr->stop(); |
|
llama_backend_free(); |
|
}; |
|
|
|
|
|
bool was_bound = false; |
|
if (params.port == 0) { |
|
int bound_port = svr->bind_to_any_port(params.hostname); |
|
if ((was_bound = (bound_port >= 0))) { |
|
params.port = bound_port; |
|
} |
|
} else { |
|
was_bound = svr->bind_to_port(params.hostname, params.port); |
|
} |
|
|
|
if (!was_bound) { |
|
|
|
|
|
|
|
|
|
LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port); |
|
clean_up(); |
|
return 1; |
|
} |
|
|
|
|
|
std::thread t([&]() { svr->listen_after_bind(); }); |
|
svr->wait_until_ready(); |
|
|
|
LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http); |
|
|
|
|
|
LOG_INF("%s: loading model\n", __func__); |
|
|
|
if (!ctx_server.load_model(params)) { |
|
clean_up(); |
|
t.join(); |
|
LOG_ERR("%s: exiting due to model loading error\n", __func__); |
|
return 1; |
|
} |
|
|
|
ctx_server.init(); |
|
state.store(SERVER_STATE_READY); |
|
|
|
LOG_INF("%s: model loaded\n", __func__); |
|
|
|
|
|
if (params.chat_template.empty()) { |
|
if (!ctx_server.validate_model_chat_template()) { |
|
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__); |
|
params.chat_template = "chatml"; |
|
} |
|
} |
|
|
|
|
|
LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str()); |
|
|
|
ctx_server.queue_tasks.on_new_task(std::bind( |
|
&server_context::process_single_task, &ctx_server, std::placeholders::_1)); |
|
|
|
ctx_server.queue_tasks.on_update_slots(std::bind( |
|
&server_context::update_slots, &ctx_server)); |
|
|
|
shutdown_handler = [&](int) { |
|
ctx_server.queue_tasks.terminate(); |
|
}; |
|
|
|
LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port); |
|
|
|
ctx_server.queue_tasks.start_loop(); |
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
|
struct sigaction sigint_action; |
|
sigint_action.sa_handler = signal_handler; |
|
sigemptyset (&sigint_action.sa_mask); |
|
sigint_action.sa_flags = 0; |
|
sigaction(SIGINT, &sigint_action, NULL); |
|
sigaction(SIGTERM, &sigint_action, NULL); |
|
#elif defined (_WIN32) |
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { |
|
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false; |
|
}; |
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); |
|
#endif |
|
|
|
clean_up(); |
|
t.join(); |
|
|
|
return 0; |
|
} |
|
|