|
#include "arg.h" |
|
#include "common.h" |
|
#include "sampling.h" |
|
#include "speculative.h" |
|
#include "log.h" |
|
#include "llama.h" |
|
|
|
#include <cstdio> |
|
#include <cstring> |
|
#include <string> |
|
#include <vector> |
|
|
|
int main(int argc, char ** argv) { |
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { |
|
return 1; |
|
} |
|
|
|
if (params.n_predict < -1) { |
|
LOG_ERR("%s: --n-predict must be >= -1\n", __func__); |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
if (params.speculative.model.empty()) { |
|
LOG_ERR("%s: --model-draft is required\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
llama_model * model_tgt = NULL; |
|
llama_model * model_dft = NULL; |
|
|
|
llama_context * ctx_tgt = NULL; |
|
llama_context * ctx_dft = NULL; |
|
|
|
|
|
common_init_result llama_init_tgt = common_init_from_params(params); |
|
|
|
model_tgt = llama_init_tgt.model; |
|
ctx_tgt = llama_init_tgt.context; |
|
|
|
|
|
params.devices = params.speculative.devices; |
|
params.model = params.speculative.model; |
|
params.n_ctx = params.speculative.n_ctx; |
|
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch; |
|
params.n_gpu_layers = params.speculative.n_gpu_layers; |
|
|
|
if (params.speculative.cpuparams.n_threads > 0) { |
|
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads; |
|
} |
|
|
|
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads; |
|
common_init_result llama_init_dft = common_init_from_params(params); |
|
|
|
model_dft = llama_init_dft.model; |
|
ctx_dft = llama_init_dft.context; |
|
|
|
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) { |
|
return 1; |
|
} |
|
|
|
|
|
std::vector<llama_token> inp; |
|
inp = common_tokenize(ctx_tgt, params.prompt, true, true); |
|
|
|
if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) { |
|
LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt)); |
|
|
|
return 1; |
|
} |
|
|
|
if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) { |
|
LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt)); |
|
|
|
return 1; |
|
} |
|
|
|
LOG("\n\n"); |
|
|
|
for (auto id : inp) { |
|
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str()); |
|
} |
|
|
|
|
|
int n_draft = params.speculative.n_max; |
|
int n_draft_min = params.speculative.n_min; |
|
|
|
float p_min = params.speculative.p_min; |
|
|
|
int n_predict = 0; |
|
int n_drafted = 0; |
|
int n_accept = 0; |
|
|
|
|
|
bool has_eos = false; |
|
|
|
|
|
|
|
|
|
|
|
const auto t_enc_start = ggml_time_us(); |
|
|
|
|
|
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling); |
|
|
|
|
|
llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1)); |
|
|
|
|
|
llama_token id_last = inp.back(); |
|
|
|
|
|
llama_tokens prompt_tgt(inp.begin(), inp.end() - 1); |
|
prompt_tgt.reserve(llama_n_ctx(ctx_tgt)); |
|
|
|
int n_past = inp.size() - 1; |
|
|
|
|
|
struct common_speculative_params params_spec; |
|
params_spec.n_draft = n_draft; |
|
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft; |
|
params_spec.p_min = p_min; |
|
|
|
struct common_speculative * spec = common_speculative_init(ctx_dft); |
|
|
|
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1); |
|
|
|
const auto t_enc_end = ggml_time_us(); |
|
|
|
const auto t_dec_start = ggml_time_us(); |
|
|
|
while (true) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last); |
|
|
|
|
|
|
|
|
|
common_batch_clear(batch_tgt); |
|
common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true); |
|
|
|
|
|
{ |
|
|
|
if (draft.size() < (size_t) n_draft_min) { |
|
draft.clear(); |
|
} |
|
|
|
for (size_t i = 0; i < draft.size(); ++i) { |
|
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); |
|
} |
|
|
|
|
|
|
|
llama_decode(ctx_tgt, batch_tgt); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft); |
|
|
|
|
|
|
|
GGML_ASSERT(ids.size() > 0); |
|
|
|
n_past += ids.size() - 1; |
|
n_drafted += draft.size(); |
|
n_accept += ids.size() - 1; |
|
n_predict += ids.size(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < ids.size(); ++i) { |
|
prompt_tgt.push_back(id_last); |
|
|
|
id_last = ids[i]; |
|
|
|
if (llama_token_is_eog(model_tgt, id_last)) { |
|
has_eos = true; |
|
break; |
|
} |
|
|
|
const std::string token_str = common_token_to_piece(ctx_tgt, id_last); |
|
|
|
if (params.use_color && i + 1 < ids.size()) { |
|
LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str()); |
|
} else { |
|
LOG("%s", token_str.c_str()); |
|
} |
|
} |
|
|
|
LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last); |
|
|
|
{ |
|
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past); |
|
|
|
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1); |
|
} |
|
|
|
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { |
|
break; |
|
} |
|
} |
|
|
|
auto t_dec_end = ggml_time_us(); |
|
|
|
const int n_input = inp.size(); |
|
|
|
LOG("\n\n"); |
|
|
|
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); |
|
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); |
|
|
|
LOG_INF("\n"); |
|
LOG_INF("n_draft = %d\n", n_draft); |
|
LOG_INF("n_predict = %d\n", n_predict); |
|
LOG_INF("n_drafted = %d\n", n_drafted); |
|
LOG_INF("n_accept = %d\n", n_accept); |
|
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); |
|
|
|
LOG_INF("\n"); |
|
LOG_INF("draft:\n\n"); |
|
|
|
llama_perf_context_print(ctx_dft); |
|
|
|
LOG_INF("\n"); |
|
LOG_INF("target:\n\n"); |
|
common_perf_print(ctx_tgt, smpl); |
|
|
|
common_sampler_free(smpl); |
|
common_speculative_free(spec); |
|
|
|
llama_free(ctx_tgt); |
|
llama_free_model(model_tgt); |
|
|
|
llama_free(ctx_dft); |
|
llama_free_model(model_dft); |
|
|
|
llama_backend_free(); |
|
|
|
LOG("\n\n"); |
|
|
|
return 0; |
|
} |
|
|