|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "Mat17892/llama_lora_G14" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
input_text = message |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|