Spaces:
Runtime error
Runtime error
import gradio as gr | |
import librosa | |
import numpy as np | |
import moviepy.editor as mpy | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import pipeline | |
# checkpoint = "openai/whisper-tiny" | |
# checkpoint = "openai/whisper-base" | |
checkpoint = "openai/whisper-small" | |
# We need to set alignment_heads on the model's generation_config (at least | |
# until the models have been updated on the hub). | |
# If you're going to use a different version of whisper, see the following | |
# for which values to use for alignment_heads: | |
# https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a | |
# whisper-tiny | |
# alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]] | |
# whisper-base | |
# alignment_heads = [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]] | |
# whisper-small | |
alignment_heads = [[5, 3], [5, 9], [8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]] | |
max_duration = 60 # seconds | |
fps = 25 | |
video_width = 640 | |
video_height = 480 | |
margin_left = 20 | |
margin_right = 20 | |
margin_top = 20 | |
line_height = 44 | |
background_image = Image.open("background.png") | |
font = ImageFont.truetype("Lato-Regular.ttf", 40) | |
text_color = (255, 200, 200) | |
highlight_color = (255, 255, 255) | |
LANGUAGES = { | |
"en": "english", | |
"zh": "chinese", | |
"de": "german", | |
"es": "spanish", | |
"ru": "russian", | |
"ko": "korean", | |
"fr": "french", | |
"ja": "japanese", | |
"pt": "portuguese", | |
"tr": "turkish", | |
"pl": "polish", | |
"ca": "catalan", | |
"nl": "dutch", | |
"ar": "arabic", | |
"sv": "swedish", | |
"it": "italian", | |
"id": "indonesian", | |
"hi": "hindi", | |
"fi": "finnish", | |
"vi": "vietnamese", | |
"he": "hebrew", | |
"uk": "ukrainian", | |
"el": "greek", | |
"ms": "malay", | |
"cs": "czech", | |
"ro": "romanian", | |
"da": "danish", | |
"hu": "hungarian", | |
"ta": "tamil", | |
"no": "norwegian", | |
"th": "thai", | |
"ur": "urdu", | |
"hr": "croatian", | |
"bg": "bulgarian", | |
"lt": "lithuanian", | |
"la": "latin", | |
"mi": "maori", | |
"ml": "malayalam", | |
"cy": "welsh", | |
"sk": "slovak", | |
"te": "telugu", | |
"fa": "persian", | |
"lv": "latvian", | |
"bn": "bengali", | |
"sr": "serbian", | |
"az": "azerbaijani", | |
"sl": "slovenian", | |
"kn": "kannada", | |
"et": "estonian", | |
"mk": "macedonian", | |
"br": "breton", | |
"eu": "basque", | |
"is": "icelandic", | |
"hy": "armenian", | |
"ne": "nepali", | |
"mn": "mongolian", | |
"bs": "bosnian", | |
"kk": "kazakh", | |
"sq": "albanian", | |
"sw": "swahili", | |
"gl": "galician", | |
"mr": "marathi", | |
"pa": "punjabi", | |
"si": "sinhala", | |
"km": "khmer", | |
"sn": "shona", | |
"yo": "yoruba", | |
"so": "somali", | |
"af": "afrikaans", | |
"oc": "occitan", | |
"ka": "georgian", | |
"be": "belarusian", | |
"tg": "tajik", | |
"sd": "sindhi", | |
"gu": "gujarati", | |
"am": "amharic", | |
"yi": "yiddish", | |
"lo": "lao", | |
"uz": "uzbek", | |
"fo": "faroese", | |
"ht": "haitian creole", | |
"ps": "pashto", | |
"tk": "turkmen", | |
"nn": "nynorsk", | |
"mt": "maltese", | |
"sa": "sanskrit", | |
"lb": "luxembourgish", | |
"my": "myanmar", | |
"bo": "tibetan", | |
"tl": "tagalog", | |
"mg": "malagasy", | |
"as": "assamese", | |
"tt": "tatar", | |
"haw": "hawaiian", | |
"ln": "lingala", | |
"ha": "hausa", | |
"ba": "bashkir", | |
"jw": "javanese", | |
"su": "sundanese", | |
} | |
# language code lookup by name, with a few language aliases | |
TO_LANGUAGE_CODE = { | |
**{language: code for code, language in LANGUAGES.items()}, | |
"burmese": "my", | |
"valencian": "ca", | |
"flemish": "nl", | |
"haitian": "ht", | |
"letzeburgesch": "lb", | |
"pushto": "ps", | |
"panjabi": "pa", | |
"moldavian": "ro", | |
"moldovan": "ro", | |
"sinhalese": "si", | |
"castilian": "es", | |
} | |
if torch.cuda.is_available() and torch.cuda.device_count() > 0: | |
from transformers import ( | |
AutomaticSpeechRecognitionPipeline, | |
WhisperForConditionalGeneration, | |
WhisperProcessor, | |
) | |
model = WhisperForConditionalGeneration.from_pretrained(checkpoint).to("cuda").half() | |
processor = WhisperProcessor.from_pretrained(checkpoint) | |
pipe = AutomaticSpeechRecognitionPipeline( | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
batch_size=8, | |
torch_dtype=torch.float16, | |
device="cuda:0" | |
) | |
else: | |
pipe = pipeline(model=checkpoint) | |
pipe.model.generation_config.alignment_heads = alignment_heads | |
chunks = [] | |
start_chunk = 0 | |
last_draws = None | |
last_image = None | |
def make_frame(t): | |
global chunks, start_chunk, last_draws, last_image | |
# TODO in the Henry V example, the word "desires" has an ending timestamp | |
# that's too far into the future, and so the word stays highlighted. | |
# Could fix this by finding the latest word that is active in the chunk | |
# and only highlight that one. | |
image = background_image.copy() | |
draw = ImageDraw.Draw(image) | |
# for debugging: draw frame time | |
#draw.text((20, 20), str(t), fill=text_color, font=font) | |
space_length = draw.textlength(" ", font) | |
x = margin_left | |
y = margin_top | |
# Create a list of drawing commands | |
draws = [] | |
for i in range(start_chunk, len(chunks)): | |
chunk = chunks[i] | |
chunk_start = chunk["timestamp"][0] | |
chunk_end = chunk["timestamp"][1] | |
if chunk_start > t: break | |
if chunk_end is None: chunk_end = max_duration | |
word = chunk["text"] | |
word_length = draw.textlength(word + " ", font) - space_length | |
if x + word_length >= video_width - margin_right: | |
x = margin_left | |
y += line_height | |
# restart page when end is reached | |
if y >= margin_top + line_height * 7: | |
start_chunk = i | |
break | |
highlight = (chunk_start <= t < chunk_end) | |
draws.append([x, y, word, word_length, highlight]) | |
x += word_length + space_length | |
# If the drawing commands didn't change, then reuse the last image, | |
# otherwise draw a new image | |
if draws != last_draws: | |
for x, y, word, word_length, highlight in draws: | |
if highlight: | |
color = highlight_color | |
draw.rectangle([x, y + line_height, x + word_length, y + line_height + 4], fill=color) | |
else: | |
color = text_color | |
draw.text((x, y), word, fill=color, font=font) | |
last_image = np.array(image) | |
last_draws = draws | |
return last_image | |
def predict(audio_path, language=None): | |
global chunks, start_chunk, last_draws, last_image | |
start_chunk = 0 | |
last_draws = None | |
last_image = None | |
audio_data, sr = librosa.load(audio_path, mono=True) | |
duration = librosa.get_duration(y=audio_data, sr=sr) | |
duration = min(max_duration, duration) | |
audio_data = audio_data[:int(duration * sr)] | |
if language is not None: | |
pipe.model.config.forced_decoder_ids = ( | |
pipe.tokenizer.get_decoder_prompt_ids( | |
language=language, | |
task="transcribe" | |
) | |
) | |
# Run Whisper to get word-level timestamps. | |
audio_inputs = librosa.resample(audio_data, orig_sr=sr, target_sr=pipe.feature_extractor.sampling_rate) | |
output = pipe(audio_inputs, chunk_length_s=30, stride_length_s=[4, 2], return_timestamps="word") | |
chunks = output["chunks"] | |
#print(chunks) | |
# Create the video. | |
clip = mpy.VideoClip(make_frame, duration=duration) | |
audio_clip = mpy.AudioFileClip(audio_path).set_duration(duration) | |
clip = clip.set_audio(audio_clip) | |
clip.write_videofile("my_video.mp4", fps=fps, codec="libx264", audio_codec="aac") | |
return "my_video.mp4" | |
title = "Word-level timestamps with Whisper" | |
description = """ | |
This demo shows Whisper <b>word-level timestamps</b> in action using Hugging Face Transformers. It creates a video showing subtitled audio with the current word highlighted. It can even do music lyrics! | |
This demo uses the <b>openai/whisper-small</b> checkpoint. | |
Since it's only a demo, the output is limited to the first 60 seconds of audio. | |
To use this on longer audio, <a href="https://huggingface.co/spaces/Matthijs/whisper_word_timestamps/settings?duplicate=true">duplicate the space</a> | |
and in <b>app.py</b> change the value of `max_duration`. | |
""" | |
article = """ | |
<div style='margin:20px auto;'> | |
<p>Credits:<p> | |
<ul> | |
<li>Shakespeare's "Henry V" speech from <a href="https://freesound.org/people/acclivity/sounds/24096/">acclivity</a> (CC BY-NC 4.0 license) | |
<li>"Here's to the Crazy Ones" speech by Steve Jobs</li> | |
<li>"Stupid People" comedy routine by Bill Engvall</li> | |
<li>"BeOS, It's The OS" song by The Cotton Squares</li> | |
<li>Lato font by Łukasz Dziedzic (licensed under Open Font License)</li> | |
<li>Whisper model by OpenAI</li> | |
</ul> | |
</div> | |
""" | |
examples = [ | |
["examples/steve_jobs_crazy_ones.mp3", "english"], | |
["examples/henry5.wav", "english"], | |
["examples/stupid_people.mp3", "english"], | |
["examples/beos_song.mp3", "english"], | |
["examples/johan_cruijff.mp3", "dutch"], | |
] | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Audio(label="Upload Audio", source="upload", type="filepath"), | |
gr.Dropdown(label="Language", choices=sorted(list(TO_LANGUAGE_CODE.keys()))), | |
], | |
outputs=[ | |
gr.Video(label="Output Video"), | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).launch() | |