Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gradio_pdf import PDF | |
from qdrant_client import models, QdrantClient | |
from sentence_transformers import SentenceTransformer | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from transformers import AutoTokenizer | |
from langchain.vectorstores import Qdrant | |
from qdrant_client.http import models | |
from ctransformers import AutoModelForCausalLM | |
# Loading the embedding model | |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1') | |
print("Embedding model loaded...") | |
# Loading the LLM | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
''' | |
llm = AutoModelForCausalLM.from_pretrained( | |
"refuelai/Llama-3-Refueled", | |
model_file="llama-2-7b-chat.Q3_K_S.gguf", | |
model_type="llama", | |
temperature=0.2, | |
repetition_penalty=1.5, | |
max_new_tokens=300, | |
) | |
''' | |
model_id = "refuelai/Llama-3-Refueled" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
llm = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
print("LLM loaded...") | |
def chat(files, question): | |
def get_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=250, | |
chunk_overlap=50, | |
length_function=len, | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
all_chunks = [] | |
for file in files: | |
pdf_path = file | |
reader = PdfReader(pdf_path) | |
text = "" | |
num_of_pages = len(reader.pages) | |
for page in range(num_of_pages): | |
current_page = reader.pages[page] | |
text += current_page.extract_text() | |
chunks = get_chunks(text) | |
all_chunks.extend(chunks) | |
print(f"Total chunks: {len(all_chunks)}") | |
print("Chunks are ready...") | |
client = QdrantClient(path="./db") | |
print("DB created...") | |
client.recreate_collection( | |
collection_name="my_facts", | |
vectors_config=models.VectorParams( | |
size=encoder.get_sentence_embedding_dimension(), | |
distance=models.Distance.COSINE, | |
), | |
) | |
print("Collection created...") | |
li = list(range(len(all_chunks))) | |
dic = dict(zip(li, all_chunks)) | |
client.upload_records( | |
collection_name="my_facts", | |
records=[ | |
models.Record( | |
id=idx, | |
vector=encoder.encode(dic[idx]).tolist(), | |
payload={f"chunk_{idx}": dic[idx]} | |
) for idx in dic.keys() | |
], | |
) | |
print("Records uploaded...") | |
hits = client.search( | |
collection_name="my_facts", | |
query_vector=encoder.encode(question).tolist(), | |
limit=3 | |
) | |
context = [] | |
for hit in hits: | |
context.append(list(hit.payload.values())[0]) | |
context = " ".join(context) | |
system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions. | |
Read the given context before answering questions and think step by step. If you cannot answer a user question based on | |
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question.""" | |
B_INST, E_INST = "[INST]", "[/INST]" | |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS | |
instruction = f""" | |
Context: {context} | |
User: {question}""" | |
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST | |
print(prompt_template) | |
result = llm(prompt_template) | |
return result | |
screen = gr.Interface( | |
fn=chat, | |
inputs=[gr.File(label="Upload PDFs", file_count="multiple"), gr.Textbox(lines=10, placeholder="Enter your question here π")], | |
outputs=gr.Textbox(lines=10, placeholder="Your answer will be here soon π"), | |
title="Q&A with PDFs π©π»βπ»πβπ»π‘", | |
description="This app facilitates a conversation with PDFs uploadedπ‘", | |
theme="soft", | |
) | |
screen.launch() | |