Spaces:
Running
on
Zero
Running
on
Zero
Added Video Support
#18
by
KingNish
- opened
- app.py +89 -69
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,79 +1,95 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
-
from datetime import datetime
|
9 |
import numpy as np
|
10 |
import os
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Convert numpy array to PIL Image
|
21 |
-
img = Image.fromarray(np.uint8(image_array))
|
22 |
-
|
23 |
-
# Generate a unique filename using timestamp
|
24 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
25 |
-
filename = f"image_{timestamp}.png"
|
26 |
-
|
27 |
-
# Save the image
|
28 |
-
img.save(filename)
|
29 |
-
|
30 |
-
# Get the full path of the saved image
|
31 |
-
full_path = os.path.abspath(filename)
|
32 |
-
|
33 |
-
return full_path
|
34 |
-
|
35 |
-
models = {
|
36 |
-
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
|
37 |
-
|
38 |
-
}
|
39 |
-
|
40 |
-
processors = {
|
41 |
-
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
42 |
-
}
|
43 |
|
44 |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
user_prompt = '<|user|>\n'
|
50 |
-
assistant_prompt = '<|assistant|>\n'
|
51 |
-
prompt_suffix = "<|end|>\n"
|
52 |
|
53 |
@spaces.GPU
|
54 |
-
def
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
messages = [
|
64 |
-
|
65 |
"role": "user",
|
66 |
"content": [
|
67 |
{
|
68 |
-
"type":
|
69 |
-
|
|
|
70 |
},
|
71 |
{"type": "text", "text": text_input},
|
72 |
],
|
73 |
}
|
74 |
]
|
75 |
-
|
76 |
-
# Preparation for inference
|
77 |
text = processor.apply_chat_template(
|
78 |
messages, tokenize=False, add_generation_prompt=True
|
79 |
)
|
@@ -84,19 +100,20 @@ def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
|
|
84 |
videos=video_inputs,
|
85 |
padding=True,
|
86 |
return_tensors="pt",
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
-
inputs =
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
-
|
99 |
-
return output_text[0]
|
100 |
|
101 |
css = """
|
102 |
#output {
|
@@ -108,17 +125,20 @@ css = """
|
|
108 |
|
109 |
with gr.Blocks(css=css) as demo:
|
110 |
gr.Markdown(DESCRIPTION)
|
111 |
-
|
|
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
-
|
115 |
-
|
|
|
116 |
text_input = gr.Textbox(label="Question")
|
117 |
submit_btn = gr.Button(value="Submit")
|
118 |
with gr.Column():
|
119 |
output_text = gr.Textbox(label="Output Text")
|
120 |
|
121 |
-
submit_btn.click(
|
|
|
|
|
122 |
|
123 |
-
demo.queue(api_open=False)
|
124 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import subprocess
|
|
|
8 |
import numpy as np
|
9 |
import os
|
10 |
+
from threading import Thread
|
11 |
+
import uuid
|
12 |
+
import io
|
13 |
|
14 |
+
# Model and Processor Loading (Done once at startup)
|
15 |
+
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
16 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
17 |
+
MODEL_ID,
|
18 |
+
trust_remote_code=True,
|
19 |
+
torch_dtype=torch.float16
|
20 |
+
).to("cuda").eval()
|
21 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
24 |
|
25 |
+
image_extensions = Image.registered_extensions()
|
26 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
27 |
+
|
28 |
+
|
29 |
+
def identify_and_save_blob(blob_path):
|
30 |
+
"""Identifies if the blob is an image or video and saves it accordingly."""
|
31 |
+
try:
|
32 |
+
with open(blob_path, 'rb') as file:
|
33 |
+
blob_content = file.read()
|
34 |
+
|
35 |
+
# Try to identify if it's an image
|
36 |
+
try:
|
37 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
38 |
+
extension = ".png" # Default to PNG for saving
|
39 |
+
media_type = "image"
|
40 |
+
except (IOError, SyntaxError):
|
41 |
+
# If it's not a valid image, assume it's a video
|
42 |
+
extension = ".mp4" # Default to MP4 for saving
|
43 |
+
media_type = "video"
|
44 |
+
|
45 |
+
# Create a unique filename
|
46 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
47 |
+
with open(filename, "wb") as f:
|
48 |
+
f.write(blob_content)
|
49 |
+
|
50 |
+
return filename, media_type
|
51 |
+
|
52 |
+
except FileNotFoundError:
|
53 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
54 |
+
except Exception as e:
|
55 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
56 |
|
|
|
|
|
|
|
57 |
|
58 |
@spaces.GPU
|
59 |
+
def qwen_inference(media_input, text_input=None):
|
60 |
+
if isinstance(media_input, str): # If it's a filepath
|
61 |
+
media_path = media_input
|
62 |
+
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
|
63 |
+
media_type = "image"
|
64 |
+
elif media_path.endswith(video_extensions):
|
65 |
+
media_type = "video"
|
66 |
+
else:
|
67 |
+
try:
|
68 |
+
media_path, media_type = identify_and_save_blob(media_input)
|
69 |
+
print(media_path, media_type)
|
70 |
+
except Exception as e:
|
71 |
+
print(e)
|
72 |
+
raise ValueError(
|
73 |
+
"Unsupported media type. Please upload an image or video."
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
print(media_path)
|
78 |
+
|
79 |
messages = [
|
80 |
+
{
|
81 |
"role": "user",
|
82 |
"content": [
|
83 |
{
|
84 |
+
"type": media_type,
|
85 |
+
media_type: media_path,
|
86 |
+
**({"fps": 8.0} if media_type == "video" else {}),
|
87 |
},
|
88 |
{"type": "text", "text": text_input},
|
89 |
],
|
90 |
}
|
91 |
]
|
92 |
+
|
|
|
93 |
text = processor.apply_chat_template(
|
94 |
messages, tokenize=False, add_generation_prompt=True
|
95 |
)
|
|
|
100 |
videos=video_inputs,
|
101 |
padding=True,
|
102 |
return_tensors="pt",
|
103 |
+
).to("cuda")
|
104 |
+
|
105 |
+
streamer = TextIteratorStreamer(
|
106 |
+
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
107 |
)
|
108 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
109 |
+
|
110 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
111 |
+
thread.start()
|
112 |
+
|
113 |
+
buffer = ""
|
114 |
+
for new_text in streamer:
|
115 |
+
buffer += new_text
|
116 |
+
yield buffer
|
|
|
|
|
|
|
117 |
|
118 |
css = """
|
119 |
#output {
|
|
|
125 |
|
126 |
with gr.Blocks(css=css) as demo:
|
127 |
gr.Markdown(DESCRIPTION)
|
128 |
+
|
129 |
+
with gr.Tab(label="Image/Video Input"):
|
130 |
with gr.Row():
|
131 |
with gr.Column():
|
132 |
+
input_media = gr.File(
|
133 |
+
label="Upload Image or Video", type="filepath"
|
134 |
+
)
|
135 |
text_input = gr.Textbox(label="Question")
|
136 |
submit_btn = gr.Button(value="Submit")
|
137 |
with gr.Column():
|
138 |
output_text = gr.Textbox(label="Output Text")
|
139 |
|
140 |
+
submit_btn.click(
|
141 |
+
qwen_inference, [input_media, text_input], [output_text]
|
142 |
+
)
|
143 |
|
|
|
144 |
demo.launch(debug=True)
|
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ torch
|
|
5 |
torchvision
|
6 |
git+https://github.com/huggingface/transformers.git
|
7 |
accelerate
|
8 |
-
qwen-vl-utils
|
|
|
|
5 |
torchvision
|
6 |
git+https://github.com/huggingface/transformers.git
|
7 |
accelerate
|
8 |
+
qwen-vl-utils
|
9 |
+
av
|