File size: 7,158 Bytes
46255b1 018302f 46255b1 018302f 46255b1 f1868ba d966562 ada00c7 46255b1 d966562 46255b1 f63b972 e6c7b47 46255b1 f63b972 e6c7b47 46255b1 f63b972 46255b1 f63b972 46255b1 d7840c4 ec6144c 46255b1 6265765 33d897a 46255b1 d7840c4 6265765 33d897a f65651d d7840c4 46255b1 f65651d 46255b1 f65651d 46255b1 f65651d 46255b1 f65651d 6e71a73 d7840c4 46255b1 bf0ee6f d966562 4ddb624 d966562 018302f d966562 bf0ee6f d966562 46255b1 d966562 46255b1 d966562 28bb975 d966562 1b5a239 ad91e40 1b5a239 ad91e40 1b5a239 d966562 46255b1 1b5a239 d966562 ada00c7 78e4858 9bf0a2d 46255b1 f65651d d966562 46255b1 d966562 46255b1 d966562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import cv2
import argparse
import glob
import numpy as np
import os
import torch
import torch.nn.functional as F
import gradio as gr
from PIL import Image
from utils.download_url import load_file_from_url
from utils.color_fix import wavelet_reconstruction
from models.safmn_arch import SAFMN
from gradio_imageslider import ImageSlider
pretrain_model_url = {
'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
}
# download weights
if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'):
load_file_from_url(url=pretrain_model_url['safmn_x2'], model_dir='./pretrained_models/', progress=True, file_name=None)
if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'):
load_file_from_url(url=pretrain_model_url['safmn_x4'], model_dir='./pretrained_models/', progress=True, file_name=None)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def set_safmn(upscale):
model = SAFMN(dim=128, n_blocks=16, ffn_scale=2.0, upscaling_factor=upscale)
if upscale == 2:
model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'
elif upscale == 4:
model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'
else:
raise NotImplementedError('Only support x2/x4 upscaling!')
model.load_state_dict(torch.load(model_path)['params'], strict=True)
model.eval()
return model.to(device)
def img2patch(lq, scale=4, crop_size=512):
b, c, hl, wl = lq.size()
h, w = hl*scale, wl*scale
sr_size = (b, c, h, w)
assert b == 1
crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale
#adaptive step_i, step_j
num_row = (h - 1) // crop_size_h + 1
num_col = (w - 1) // crop_size_w + 1
import math
step_j = crop_size_w if num_col == 1 else math.ceil((w - crop_size_w) / (num_col - 1) - 1e-8)
step_i = crop_size_h if num_row == 1 else math.ceil((h - crop_size_h) / (num_row - 1) - 1e-8)
step_i = step_i // scale * scale
step_j = step_j // scale * scale
parts = []
idxes = []
i = 0 # 0~h-1
last_i = False
while i < h and not last_i:
j = 0
if i + crop_size_h >= h:
i = h - crop_size_h
last_i = True
last_j = False
while j < w and not last_j:
if j + crop_size_w >= w:
j = w - crop_size_w
last_j = True
parts.append(lq[:, :, i // scale :(i + crop_size_h) // scale, j // scale:(j + crop_size_w) // scale])
idxes.append({'i': i, 'j': j})
j = j + step_j
i = i + step_i
return torch.cat(parts, dim=0), idxes, sr_size
def patch2img(outs, idxes, sr_size, scale=4, crop_size=512):
preds = torch.zeros(sr_size).to(outs.device)
b, c, h, w = sr_size
count_mt = torch.zeros((b, 1, h, w)).to(outs.device)
crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale
for cnt, each_idx in enumerate(idxes):
i = each_idx['i']
j = each_idx['j']
preds[0, :, i: i + crop_size_h, j: j + crop_size_w] += outs[cnt]
count_mt[0, 0, i: i + crop_size_h, j: j + crop_size_w] += 1.
return (preds / count_mt).to(outs.device)
def inference(image, upscale, large_input_flag, color_fix):
if upscale is None or not isinstance(upscale, (int, float)) or upscale == 3.:
upscale = 2
upscale = int(upscale)
model = set_safmn(upscale)
# img2tensor
y = np.array(image).astype(np.float32) / 255.
y = torch.from_numpy(np.transpose(y[:, :, [2, 1, 0]], (2, 0, 1))).float()
y = y.unsqueeze(0).to(device)
# inference
if large_input_flag:
patches, idx, size = img2patch(y, scale=upscale)
with torch.no_grad():
n = len(patches)
outs = []
m = 1
i = 0
while i < n:
j = i + m
if j >= n:
j = n
pred = output = model(patches[i:j])
if isinstance(pred, list):
pred = pred[-1]
outs.append(pred.detach())
i = j
output = torch.cat(outs, dim=0)
output = patch2img(output, idx, size, scale=upscale)
else:
with torch.no_grad():
output = model(y)
# color fix
if color_fix:
y = F.interpolate(y, scale_factor=upscale, mode='bilinear')
output = wavelet_reconstruction(output, y)
# tensor2img
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round().astype(np.uint8)
return image, Image.fromarray(output)
title = "SAFMN for Real-world SR (running on CPU)"
description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
#### [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
#### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
#### Drag the slider on the super-resolution image left and right to see the changes in the image details.
#### SAFMN performs x2/x4 upscaling on the input image. If the input image is larger than 720P, it is recommended to use Memory-efficient inference.
<br>
#### If our work is useful for your research, please consider citing:
<br>
<code>
@inproceedings{sun2023safmn,
title={Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution},
author={Sun, Long and Dong, Jiangxin and Tang, Jinhui and Pan, Jinshan},
booktitle={ICCV},
year={2023}
}
</code>
<br>
'''
article = "<p style='text-align: center'><a href='https://github.com/sunny2109/SAFMN/tree/main' target='_blank'>Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution</a></p>"
#### Image,Prompts examples
examples = [
['real_testdata/004.png'],
['real_testdata/013.png'],
['real_testdata/014.png'],
['real_testdata/015.png'],
['real_testdata/021.png'],
['real_testdata/032.png'],
['real_testdata/045.png'],
['real_testdata/059.png'],
['real_testdata/058.png'],
['real_testdata/054.png'],
]
css = """
.image-frame img, .image-container img {
width: auto;
height: auto;
max-width: none;
}
"""
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(value="real_testdata/004.png", type="pil", label="Input"),
gr.Number(minimum=2, maximum=4, label="Upscaling factor (up to 4)"),
gr.Checkbox(value=False, label="Memory-efficient inference"),
gr.Checkbox(value=False, label="Color correction"),
],
outputs=ImageSlider(label="Super-Resolved Image",
type="pil",
show_download_button=True,
),
title=title,
description=description,
article=article,
examples=examples,
css=css,
)
if __name__ == "__main__":
demo.launch() |