Spaces:
Running
on
Zero
Running
on
Zero
Enhance image generation function by initializing random number generator for device-specific operations; update markdown instructions for clarity and improve HTML header formatting
55002dc
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
import os.path as osp | |
import time | |
import argparse | |
import shutil | |
import random | |
from pathlib import Path | |
from typing import List | |
import json | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
import PIL.Image as PImage | |
from torchvision.transforms.functional import to_tensor | |
from transformers import AutoTokenizer, T5EncoderModel | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import spaces | |
from models.infinity import Infinity | |
from models.basic import * | |
from utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates | |
from gradio_client import Client | |
torch._dynamo.config.cache_size_limit = 64 | |
client = Client("Qwen/Qwen2.5-72B-Instruct") | |
# Define a function to download weights if not present | |
def download_infinity_weights(weights_path): | |
try: | |
model_file = weights_path / 'infinity_2b_reg.pth' | |
if not model_file.exists(): | |
hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_2b_reg.pth", local_dir=str(weights_path)) | |
vae_file = weights_path / 'infinity_vae_d32reg.pth' | |
if not vae_file.exists(): | |
hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_vae_d32reg.pth", local_dir=str(weights_path)) | |
except Exception as e: | |
print(f"Error downloading weights: {e}") | |
def encode_prompt(text_tokenizer, text_encoder, prompt): | |
print(f'prompt={prompt}') | |
captions = [prompt] | |
tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # todo: put this into dataset | |
input_ids = tokens.input_ids.cuda(non_blocking=True) if torch.cuda.is_available() else tokens.input_ids | |
mask = tokens.attention_mask.cuda(non_blocking=True) if torch.cuda.is_available() else tokens.attention_mask | |
text_features = text_encoder(input_ids=input_ids, attention_mask=mask)['last_hidden_state'].float() | |
lens: List[int] = mask.sum(dim=-1).tolist() | |
cu_seqlens_k = F.pad(mask.sum(dim=-1).to(dtype=torch.int32).cumsum_(0), (1, 0)) | |
Ltext = max(lens) | |
kv_compact = [] | |
for len_i, feat_i in zip(lens, text_features.unbind(0)): | |
kv_compact.append(feat_i[:len_i]) | |
kv_compact = torch.cat(kv_compact, dim=0) | |
text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext) | |
return text_cond_tuple | |
def save_slim_model(infinity_model_path, save_file=None, device='cpu', key='gpt_fsdp'): | |
print('[Save slim model]') | |
full_ckpt = torch.load(infinity_model_path, map_location=device) | |
infinity_slim = full_ckpt['trainer'][key] | |
# ema_state_dict = cpu_d['trainer'].get('gpt_ema_fsdp', state_dict) | |
if not save_file: | |
save_file = osp.splitext(infinity_model_path)[0] + '-slim.pth' | |
print(f'Save to {save_file}') | |
torch.save(infinity_slim, save_file) | |
print('[Save slim model] done') | |
return save_file | |
def load_tokenizer(t5_path='google/flan-t5-xl'): | |
""" | |
Load and configure the T5 tokenizer and encoder with optimizations. | |
""" | |
try: | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
bf16_supported = device.type == 'cuda' and torch.cuda.is_bf16_supported() | |
dtype = torch.bfloat16 if bf16_supported else torch.float32 | |
tokenizer = AutoTokenizer.from_pretrained( | |
t5_path, | |
legacy=True, | |
model_max_length=512, | |
use_fast=True, | |
) | |
if device.type == 'cuda': | |
torch.cuda.empty_cache() | |
encoder = T5EncoderModel.from_pretrained( | |
t5_path, | |
torch_dtype=dtype, | |
) | |
encoder.eval().requires_grad_(False).to(device) | |
if device.type == 'cuda' and not bf16_supported: | |
encoder.half() | |
return tokenizer, encoder | |
except Exception as e: | |
print(f"Error loading tokenizer/encoder: {str(e)}") | |
raise RuntimeError("Failed to initialize text models") from e | |
def load_infinity( | |
rope2d_each_sa_layer, | |
rope2d_normalized_by_hw, | |
use_scale_schedule_embedding, | |
pn, | |
use_bit_label, | |
add_lvl_embeding_only_first_block, | |
model_path='', | |
scale_schedule=None, | |
vae=None, | |
device=None, # Make device optional | |
model_kwargs=None, | |
text_channels=2048, | |
apply_spatial_patchify=0, | |
use_flex_attn=False, | |
bf16=True, | |
): | |
print('[Loading Infinity]') | |
# Set device if not provided | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f'Using device: {device}') | |
# Set autocast dtype based on bf16 and device support | |
if bf16 and device == 'cuda' and torch.cuda.is_bf16_supported(): | |
autocast_dtype = torch.bfloat16 | |
else: | |
autocast_dtype = torch.float32 | |
bf16 = False # Disable bf16 if not supported | |
text_maxlen = 512 | |
torch.cuda.empty_cache() | |
with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad(): | |
infinity_test: Infinity = Infinity( | |
vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen, | |
shared_aln=True, raw_scale_schedule=scale_schedule, | |
checkpointing='full-block', | |
customized_flash_attn=False, | |
fused_norm=True, | |
pad_to_multiplier=128, | |
use_flex_attn=use_flex_attn, | |
add_lvl_embeding_only_first_block=add_lvl_embeding_only_first_block, | |
use_bit_label=use_bit_label, | |
rope2d_each_sa_layer=rope2d_each_sa_layer, | |
rope2d_normalized_by_hw=rope2d_normalized_by_hw, | |
pn=pn, | |
apply_spatial_patchify=apply_spatial_patchify, | |
inference_mode=True, | |
train_h_div_w_list=[1.0], | |
**model_kwargs, | |
).to(device) | |
print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}') | |
if bf16: | |
for block in infinity_test.unregistered_blocks: | |
block.bfloat16() | |
infinity_test.eval() | |
infinity_test.requires_grad_(False) | |
print('[Load Infinity weights]') | |
state_dict = torch.load(model_path, map_location=device) | |
print(infinity_test.load_state_dict(state_dict)) | |
# # Initialize random number generator on the correct device | |
# infinity_test.rng = torch.Generator(device=device) | |
return infinity_test | |
def transform(pil_img: PImage.Image, tgt_h: int, tgt_w: int) -> torch.Tensor: | |
""" | |
Transform a PIL image to a tensor with target dimensions while preserving aspect ratio. | |
Args: | |
pil_img: PIL Image to transform | |
tgt_h: Target height | |
tgt_w: Target width | |
Returns: | |
torch.Tensor: Normalized tensor image in range [-1, 1] | |
""" | |
if not isinstance(pil_img, PImage.Image): | |
raise TypeError("Input must be a PIL Image") | |
if tgt_h <= 0 or tgt_w <= 0: | |
raise ValueError("Target dimensions must be positive") | |
# Calculate resize dimensions preserving aspect ratio | |
width, height = pil_img.size | |
scale = min(tgt_w / width, tgt_h / height) | |
new_width = int(width * scale) | |
new_height = int(height * scale) | |
# Resize using LANCZOS for best quality | |
pil_img = pil_img.resize((new_width, new_height), resample=PImage.LANCZOS) | |
# Create center crop | |
arr = np.array(pil_img, dtype=np.uint8) | |
# Calculate crop coordinates | |
y1 = max(0, (new_height - tgt_h) // 2) | |
x1 = max(0, (new_width - tgt_w) // 2) | |
y2 = y1 + tgt_h | |
x2 = x1 + tgt_w | |
# Crop and convert to tensor | |
arr = arr[y1:y2, x1:x2] | |
# Convert to normalized tensor in one step | |
return torch.from_numpy(arr.transpose(2, 0, 1)).float().div_(127.5).sub_(1) | |
def joint_vi_vae_encode_decode( | |
vae: 'VAEModel', # Type hint would be more specific with actual VAE class | |
image_path: str | Path, | |
scale_schedule: List[tuple], | |
device: torch.device | str, | |
tgt_h: int, | |
tgt_w: int | |
) -> tuple[np.ndarray, np.ndarray, torch.Tensor]: | |
""" | |
Encode and decode an image using a VAE model with joint visual-infinity processing. | |
Args: | |
vae: The VAE model instance | |
image_path: Path to input image | |
scale_schedule: List of scale tuples for processing | |
device: Target device for computation | |
tgt_h: Target height for the image | |
tgt_w: Target width for the image | |
Returns: | |
tuple containing: | |
- Original image as numpy array (uint8) | |
- Reconstructed image as numpy array (uint8) | |
- Bit indices tensor | |
Raises: | |
FileNotFoundError: If image file doesn't exist | |
RuntimeError: If VAE processing fails | |
""" | |
try: | |
# Validate input path | |
if not Path(image_path).exists(): | |
raise FileNotFoundError(f"Image not found at {image_path}") | |
# Load and preprocess image | |
pil_image = Image.open(image_path).convert('RGB') | |
inp = transform(pil_image, tgt_h, tgt_w) | |
inp = inp.unsqueeze(0).to(device) | |
# Normalize scale schedule | |
scale_schedule = [(s[0], s[1], s[2]) for s in scale_schedule] | |
# Decide whether to use CPU or GPU | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Time the encoding/decoding operations | |
with torch.amp.autocast(device, dtype=torch.bfloat16): | |
encode_start = time.perf_counter() | |
h, z, _, all_bit_indices, _, _ = vae.encode( | |
inp, | |
scale_schedule=scale_schedule | |
) | |
encode_time = time.perf_counter() - encode_start | |
decode_start = time.perf_counter() | |
recons_img = vae.decode(z)[0] | |
decode_time = time.perf_counter() - decode_start | |
# Process reconstruction | |
if recons_img.dim() == 4: | |
recons_img = recons_img.squeeze(1) | |
# Log performance metrics | |
print(f'VAE encode: {encode_time:.2f}s, decode: {decode_time:.2f}s') | |
print(f'Reconstruction shape: {recons_img.shape}, z shape: {z.shape}') | |
# Convert to numpy arrays efficiently | |
recons_img = (recons_img.add(1).div(2) | |
.permute(1, 2, 0) | |
.mul(255) | |
.cpu() | |
.numpy() | |
.astype(np.uint8)) | |
gt_img = (inp[0].add(1).div(2) | |
.permute(1, 2, 0) | |
.mul(255) | |
.cpu() | |
.numpy() | |
.astype(np.uint8)) | |
return gt_img, recons_img, all_bit_indices | |
except Exception as e: | |
print(f"Error in VAE processing: {str(e)}") | |
raise RuntimeError("VAE processing failed") from e | |
def load_visual_tokenizer(args): | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# load vae | |
if args.vae_type in [16,18,20,24,32,64]: | |
from models.bsq_vae.vae import vae_model | |
schedule_mode = "dynamic" | |
codebook_dim = args.vae_type | |
codebook_size = 2**codebook_dim | |
if args.apply_spatial_patchify: | |
patch_size = 8 | |
encoder_ch_mult=[1, 2, 4, 4] | |
decoder_ch_mult=[1, 2, 4, 4] | |
else: | |
patch_size = 16 | |
encoder_ch_mult=[1, 2, 4, 4, 4] | |
decoder_ch_mult=[1, 2, 4, 4, 4] | |
vae = vae_model(args.vae_path, schedule_mode, codebook_dim, codebook_size, patch_size=patch_size, | |
encoder_ch_mult=encoder_ch_mult, decoder_ch_mult=decoder_ch_mult, test_mode=True).to(device) | |
else: | |
raise ValueError(f'vae_type={args.vae_type} not supported') | |
return vae | |
def load_transformer(vae, args): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_path = args.model_path | |
if args.checkpoint_type == 'torch': | |
slim_model_path = model_path | |
print(f'Loading checkpoint from {slim_model_path}') | |
else: | |
raise ValueError(f"Unsupported checkpoint_type: {args.checkpoint_type}") | |
model_configs = { | |
'infinity_2b': dict(depth=32, embed_dim=2048, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8), | |
'infinity_layer12': dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), | |
'infinity_layer16': dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), | |
'infinity_layer24': dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), | |
'infinity_layer32': dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), | |
'infinity_layer40': dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), | |
'infinity_layer48': dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4), | |
} | |
kwargs_model = model_configs.get(args.model_type) | |
if kwargs_model is None: | |
raise ValueError(f"Unsupported model_type: {args.model_type}") | |
infinity = load_infinity( | |
rope2d_each_sa_layer=args.rope2d_each_sa_layer, | |
rope2d_normalized_by_hw=args.rope2d_normalized_by_hw, | |
use_scale_schedule_embedding=args.use_scale_schedule_embedding, | |
pn=args.pn, | |
use_bit_label=args.use_bit_label, | |
add_lvl_embeding_only_first_block=args.add_lvl_embeding_only_first_block, | |
model_path=slim_model_path, | |
scale_schedule=None, | |
vae=vae, | |
device=device, | |
model_kwargs=kwargs_model, | |
text_channels=args.text_channels, | |
apply_spatial_patchify=args.apply_spatial_patchify, | |
use_flex_attn=args.use_flex_attn, | |
bf16=args.bf16, | |
) | |
return infinity | |
def enhance_prompt(prompt): | |
SYSTEM = """You are part of a team of bots that creates images. You work with an assistant bot that will draw anything you say. | |
When given a user prompt, your role is to transform it into a creative, detailed, and vivid image description that focuses on visual and sensory features. Avoid directly referencing specific real-world people, places, or cultural knowledge unless explicitly requested by the user. | |
### Guidelines for Generating the Output: | |
1. **Output Format:** | |
Your response must be in the following dictionary format: | |
```json | |
{ | |
"prompt": "<enhanced image description>", | |
"cfg": <cfg value> | |
} | |
``` | |
2. **Enhancing the "prompt" field:** | |
- Use your creativity to expand short or vague prompts into highly detailed, visually rich descriptions. | |
- Focus on describing visual and sensory elements, such as colors, textures, shapes, lighting, and emotions. | |
- Avoid including known real-world information unless the user explicitly requests it. Instead, describe features that evoke the essence or appearance of the scene or subject. | |
- For particularly long user prompts (over 50 words), output them directly without refinement. | |
- Image descriptions must remain between 8-512 words. Any excess text will be ignored. | |
- If the user's request involves rendering specific text in the image, enclose that text in single quotation marks and prefix it with "the text". | |
3. **Determining the "cfg" field:** | |
- If the image to be generated is likely to feature a clear face, set `"cfg": 1`. | |
- If the image does not prominently feature a face, set `"cfg": 3`. | |
4. **Examples of Enhanced Prompts:** | |
- **User prompt:** "a tree" | |
**Enhanced prompt:** "A towering tree with a textured bark of intricate ridges and grooves stands under a pale blue sky. Its sprawling branches create an umbrella of rich, deep green foliage, with a few golden leaves scattered, catching the sunlight like tiny stars." | |
**Cfg:** `3` | |
- **User prompt:** "a person reading" | |
**Enhanced prompt:** "A figure sits on a cozy armchair, illuminated by the soft, warm glow of a nearby lamp. Their posture is relaxed, and their hands gently hold an open book. Shadows dance across their thoughtful expression, while the fabric of their clothing appears textured and soft, with subtle folds." | |
**Cfg:** `1` | |
5. **Your Output:** | |
Always return a single dictionary containing both `"prompt"` and `"cfg"` fields. Avoid any additional commentary or explanations. | |
Don't write anything except the dictionary in the output. (Don't start with ```) | |
""" | |
result = client.predict( | |
query=prompt, | |
history=[], | |
system=SYSTEM, | |
api_name="/model_chat" | |
) | |
dict_of_inputs = json.loads(result[1][-1][-1]) | |
print(dict_of_inputs) | |
return gr.update(value=dict_of_inputs["prompt"]), gr.update(value=float(dict_of_inputs['cfg'])) | |
# Set up paths | |
weights_path = Path(__file__).parent / 'weights' | |
weights_path.mkdir(exist_ok=True) | |
download_infinity_weights(weights_path) | |
# Device setup | |
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32 | |
print(f"Using dtype: {dtype}") | |
# Define args | |
args = argparse.Namespace( | |
pn='1M', | |
model_path=str(weights_path / 'infinity_2b_reg.pth'), | |
cfg_insertion_layer=0, | |
vae_type=32, | |
vae_path=str(weights_path / 'infinity_vae_d32reg.pth'), | |
add_lvl_embeding_only_first_block=1, | |
use_bit_label=1, | |
model_type='infinity_2b', | |
rope2d_each_sa_layer=1, | |
rope2d_normalized_by_hw=2, | |
use_scale_schedule_embedding=0, | |
sampling_per_bits=1, | |
text_channels=2048, | |
apply_spatial_patchify=0, | |
h_div_w_template=1.000, | |
use_flex_attn=0, | |
cache_dir='/dev/shm', | |
checkpoint_type='torch', | |
seed=0, | |
bf16=1 if dtype == torch.bfloat16 else 0, | |
save_file='tmp.jpg', | |
enable_model_cache=False, | |
) | |
# Load models | |
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") | |
text_tokenizer, text_encoder = load_tokenizer(t5_path="google/flan-t5-xl") | |
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") | |
vae = load_visual_tokenizer(args) | |
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") | |
infinity = load_transformer(vae, args) | |
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB") | |
# Define the image generation function | |
def generate_image(prompt, cfg, tau, h_div_w, seed): | |
args.prompt = prompt | |
args.cfg = cfg | |
args.tau = tau | |
args.h_div_w = h_div_w | |
args.seed = seed | |
# Find the closest h_div_w_template | |
h_div_w_template_ = h_div_w_templates[np.argmin(np.abs(h_div_w_templates - h_div_w))] | |
# Get scale_schedule based on h_div_w_template_ | |
scale_schedule = dynamic_resolution_h_w[h_div_w_template_][args.pn]['scales'] | |
scale_schedule = [(1, h, w) for (_, h, w) in scale_schedule] | |
# Encode the prompt | |
text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt) | |
# Set device if not provided | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Set autocast dtype based on bf16 and device support | |
if device == 'cuda' and torch.cuda.is_bf16_supported(): | |
autocast_dtype = torch.bfloat16 | |
else: | |
autocast_dtype = torch.float32 | |
torch.cuda.empty_cache() | |
with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad(): | |
infinity.rng = torch.Generator(device=device) | |
_, _, img_list = infinity.autoregressive_infer_cfg( | |
vae=vae, | |
scale_schedule=scale_schedule, | |
label_B_or_BLT=text_cond_tuple, g_seed=seed, | |
B=1, negative_label_B_or_BLT=None, force_gt_Bhw=None, | |
cfg_sc=3, cfg_list=[cfg] * len(scale_schedule), tau_list=[tau] * len(scale_schedule), top_k=900, top_p=0.97, | |
returns_vemb=1, ratio_Bl1=None, gumbel=0, norm_cfg=False, | |
cfg_exp_k=0.0, cfg_insertion_layer=[args.cfg_insertion_layer], | |
vae_type=args.vae_type, softmax_merge_topk=-1, | |
ret_img=True, trunk_scale=1000, | |
gt_leak=0, gt_ls_Bl=None, inference_mode=True, | |
sampling_per_bits=args.sampling_per_bits, | |
) | |
infinity.rng = torch.Generator(device="cpu") | |
img = img_list[0] | |
image = img.cpu().numpy() | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = np.uint8(image) | |
return image | |
markdown_description = """### Instructions: | |
1. Enter a detailed prompt with rich visual features or use the "Enhance Prompt" button to generate a more detailed description. | |
2. Adjust the "CFG" and "Tau" sliders to control the strength and randomness of the output. | |
3. Use the "Aspect Ratio" slider to set the aspect ratio of the generated image. | |
4. Click the "Generate Image" button to create the image based on your prompt. | |
Arxiv Paper: | |
[Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis](https://arxiv.org/abs/2412.04431). | |
""" | |
html_header = """<div style="text-align: center; margin-bottom: 20px;"> | |
<h1>Infinity Image Generator by <a href="https://github.com/FoundationVision/Infinity" target="_blank" rel="noopener noreferrer">FoundationVision</a></h1> | |
<p style="font-size: 14px; color: #888;">This is not the official implementation from the main developers!</p> | |
</div>""" | |
with gr.Blocks() as demo: | |
gr.HTML(html_header) | |
gr.Markdown(markdown_description) | |
with gr.Row(): | |
with gr.Column(): | |
# Prompt Settings | |
gr.Markdown("### Prompt Settings") | |
prompt = gr.Textbox(label="Prompt", value="alien spaceship enterprise", placeholder="Enter your prompt here...") | |
enhance_prompt_button = gr.Button("Enhance Prompt", variant="secondary") | |
# Image Settings | |
gr.Markdown("### Image Settings") | |
with gr.Row(): | |
cfg = gr.Slider(label="CFG (Classifier-Free Guidance)", minimum=1, maximum=10, step=0.5, value=3, info="Controls the strength of the prompt.") | |
tau = gr.Slider(label="Tau (Temperature)", minimum=0.1, maximum=1.0, step=0.1, value=0.5, info="Controls the randomness of the output.") | |
with gr.Row(): | |
h_div_w = gr.Slider(label="Aspect Ratio (Height/Width)", minimum=0.5, maximum=2.0, step=0.1, value=1.0, info="Set the aspect ratio of the generated image.") | |
seed = gr.Number(label="Seed", value=random.randint(0, 10000), info="Set a seed for reproducibility.") | |
# Generate Button | |
generate_button = gr.Button("Generate Image", variant="primary") | |
with gr.Column(): | |
# Output Section | |
gr.Markdown("### Generated Image") | |
output_image = gr.Image(label="Generated Image", type="pil") | |
# Error Handling | |
error_message = gr.Textbox(label="Error Message", visible=False) | |
# Link the enhance prompt button to the prompt enhancement function | |
enhance_prompt_button.click( | |
enhance_prompt, | |
inputs=prompt, | |
outputs=[prompt, cfg], | |
) | |
# Link the generate button to the image generation function | |
generate_button.click( | |
generate_image, | |
inputs=[prompt, cfg, tau, h_div_w, seed], | |
outputs=output_image | |
) | |
# Launch the Gradio app | |
demo.launch() |