|
import gc |
|
import hashlib |
|
import os |
|
import queue |
|
import threading |
|
import json |
|
import shlex |
|
import sys |
|
import subprocess |
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
import torch |
|
from tqdm import tqdm |
|
|
|
try: |
|
from .utils import ( |
|
remove_directory_contents, |
|
create_directories, |
|
) |
|
except: |
|
from utils import ( |
|
remove_directory_contents, |
|
create_directories, |
|
) |
|
from .logging_setup import logger |
|
|
|
try: |
|
import onnxruntime as ort |
|
except Exception as error: |
|
logger.error(str(error)) |
|
|
|
|
|
|
|
stem_naming = { |
|
"Vocals": "Instrumental", |
|
"Other": "Instruments", |
|
"Instrumental": "Vocals", |
|
"Drums": "Drumless", |
|
"Bass": "Bassless", |
|
} |
|
|
|
|
|
class MDXModel: |
|
def __init__( |
|
self, |
|
device, |
|
dim_f, |
|
dim_t, |
|
n_fft, |
|
hop=1024, |
|
stem_name=None, |
|
compensation=1.000, |
|
): |
|
self.dim_f = dim_f |
|
self.dim_t = dim_t |
|
self.dim_c = 4 |
|
self.n_fft = n_fft |
|
self.hop = hop |
|
self.stem_name = stem_name |
|
self.compensation = compensation |
|
|
|
self.n_bins = self.n_fft // 2 + 1 |
|
self.chunk_size = hop * (self.dim_t - 1) |
|
self.window = torch.hann_window( |
|
window_length=self.n_fft, periodic=True |
|
).to(device) |
|
|
|
out_c = self.dim_c |
|
|
|
self.freq_pad = torch.zeros( |
|
[1, out_c, self.n_bins - self.dim_f, self.dim_t] |
|
).to(device) |
|
|
|
def stft(self, x): |
|
x = x.reshape([-1, self.chunk_size]) |
|
x = torch.stft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop, |
|
window=self.window, |
|
center=True, |
|
return_complex=True, |
|
) |
|
x = torch.view_as_real(x) |
|
x = x.permute([0, 3, 1, 2]) |
|
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( |
|
[-1, 4, self.n_bins, self.dim_t] |
|
) |
|
return x[:, :, : self.dim_f] |
|
|
|
def istft(self, x, freq_pad=None): |
|
freq_pad = ( |
|
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) |
|
if freq_pad is None |
|
else freq_pad |
|
) |
|
x = torch.cat([x, freq_pad], -2) |
|
|
|
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( |
|
[-1, 2, self.n_bins, self.dim_t] |
|
) |
|
x = x.permute([0, 2, 3, 1]) |
|
x = x.contiguous() |
|
x = torch.view_as_complex(x) |
|
x = torch.istft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop, |
|
window=self.window, |
|
center=True, |
|
) |
|
return x.reshape([-1, 2, self.chunk_size]) |
|
|
|
|
|
class MDX: |
|
DEFAULT_SR = 44100 |
|
|
|
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR |
|
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR |
|
|
|
def __init__( |
|
self, model_path: str, params: MDXModel, processor=0 |
|
): |
|
|
|
self.device = ( |
|
torch.device(f"cuda:{processor}") |
|
if processor >= 0 |
|
else torch.device("cpu") |
|
) |
|
self.provider = ( |
|
["CUDAExecutionProvider"] |
|
if processor >= 0 |
|
else ["CPUExecutionProvider"] |
|
) |
|
|
|
self.model = params |
|
|
|
|
|
self.ort = ort.InferenceSession(model_path, providers=self.provider) |
|
|
|
self.ort.run( |
|
None, |
|
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()}, |
|
) |
|
self.process = lambda spec: self.ort.run( |
|
None, {"input": spec.cpu().numpy()} |
|
)[0] |
|
|
|
self.prog = None |
|
|
|
@staticmethod |
|
def get_hash(model_path): |
|
try: |
|
with open(model_path, "rb") as f: |
|
f.seek(-10000 * 1024, 2) |
|
model_hash = hashlib.md5(f.read()).hexdigest() |
|
except: |
|
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest() |
|
|
|
return model_hash |
|
|
|
@staticmethod |
|
def segment( |
|
wave, |
|
combine=True, |
|
chunk_size=DEFAULT_CHUNK_SIZE, |
|
margin_size=DEFAULT_MARGIN_SIZE, |
|
): |
|
""" |
|
Segment or join segmented wave array |
|
|
|
Args: |
|
wave: (np.array) Wave array to be segmented or joined |
|
combine: (bool) If True, combines segmented wave array. |
|
If False, segments wave array. |
|
chunk_size: (int) Size of each segment (in samples) |
|
margin_size: (int) Size of margin between segments (in samples) |
|
|
|
Returns: |
|
numpy array: Segmented or joined wave array |
|
""" |
|
|
|
if combine: |
|
|
|
processed_wave = None |
|
for segment_count, segment in enumerate(wave): |
|
start = 0 if segment_count == 0 else margin_size |
|
end = None if segment_count == len(wave) - 1 else -margin_size |
|
if margin_size == 0: |
|
end = None |
|
if processed_wave is None: |
|
processed_wave = segment[:, start:end] |
|
else: |
|
processed_wave = np.concatenate( |
|
(processed_wave, segment[:, start:end]), axis=-1 |
|
) |
|
|
|
else: |
|
processed_wave = [] |
|
sample_count = wave.shape[-1] |
|
|
|
if chunk_size <= 0 or chunk_size > sample_count: |
|
chunk_size = sample_count |
|
|
|
if margin_size > chunk_size: |
|
margin_size = chunk_size |
|
|
|
for segment_count, skip in enumerate( |
|
range(0, sample_count, chunk_size) |
|
): |
|
margin = 0 if segment_count == 0 else margin_size |
|
end = min(skip + chunk_size + margin_size, sample_count) |
|
start = skip - margin |
|
|
|
cut = wave[:, start:end].copy() |
|
processed_wave.append(cut) |
|
|
|
if end == sample_count: |
|
break |
|
|
|
return processed_wave |
|
|
|
def pad_wave(self, wave): |
|
""" |
|
Pad the wave array to match the required chunk size |
|
|
|
Args: |
|
wave: (np.array) Wave array to be padded |
|
|
|
Returns: |
|
tuple: (padded_wave, pad, trim) |
|
- padded_wave: Padded wave array |
|
- pad: Number of samples that were padded |
|
- trim: Number of samples that were trimmed |
|
""" |
|
n_sample = wave.shape[1] |
|
trim = self.model.n_fft // 2 |
|
gen_size = self.model.chunk_size - 2 * trim |
|
pad = gen_size - n_sample % gen_size |
|
|
|
|
|
wave_p = np.concatenate( |
|
( |
|
np.zeros((2, trim)), |
|
wave, |
|
np.zeros((2, pad)), |
|
np.zeros((2, trim)), |
|
), |
|
1, |
|
) |
|
|
|
mix_waves = [] |
|
for i in range(0, n_sample + pad, gen_size): |
|
waves = np.array(wave_p[:, i:i + self.model.chunk_size]) |
|
mix_waves.append(waves) |
|
|
|
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to( |
|
self.device |
|
) |
|
|
|
return mix_waves, pad, trim |
|
|
|
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int): |
|
""" |
|
Process each wave segment in a multi-threaded environment |
|
|
|
Args: |
|
mix_waves: (torch.Tensor) Wave segments to be processed |
|
trim: (int) Number of samples trimmed during padding |
|
pad: (int) Number of samples padded during padding |
|
q: (queue.Queue) Queue to hold the processed wave segments |
|
_id: (int) Identifier of the processed wave segment |
|
|
|
Returns: |
|
numpy array: Processed wave segment |
|
""" |
|
mix_waves = mix_waves.split(1) |
|
with torch.no_grad(): |
|
pw = [] |
|
for mix_wave in mix_waves: |
|
self.prog.update() |
|
spec = self.model.stft(mix_wave) |
|
processed_spec = torch.tensor(self.process(spec)) |
|
processed_wav = self.model.istft( |
|
processed_spec.to(self.device) |
|
) |
|
processed_wav = ( |
|
processed_wav[:, :, trim:-trim] |
|
.transpose(0, 1) |
|
.reshape(2, -1) |
|
.cpu() |
|
.numpy() |
|
) |
|
pw.append(processed_wav) |
|
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad] |
|
q.put({_id: processed_signal}) |
|
return processed_signal |
|
|
|
def process_wave(self, wave: np.array, mt_threads=1): |
|
""" |
|
Process the wave array in a multi-threaded environment |
|
|
|
Args: |
|
wave: (np.array) Wave array to be processed |
|
mt_threads: (int) Number of threads to be used for processing |
|
|
|
Returns: |
|
numpy array: Processed wave array |
|
""" |
|
self.prog = tqdm(total=0) |
|
chunk = wave.shape[-1] // mt_threads |
|
waves = self.segment(wave, False, chunk) |
|
|
|
|
|
q = queue.Queue() |
|
threads = [] |
|
for c, batch in enumerate(waves): |
|
mix_waves, pad, trim = self.pad_wave(batch) |
|
self.prog.total = len(mix_waves) * mt_threads |
|
thread = threading.Thread( |
|
target=self._process_wave, args=(mix_waves, trim, pad, q, c) |
|
) |
|
thread.start() |
|
threads.append(thread) |
|
for thread in threads: |
|
thread.join() |
|
self.prog.close() |
|
|
|
processed_batches = [] |
|
while not q.empty(): |
|
processed_batches.append(q.get()) |
|
processed_batches = [ |
|
list(wave.values())[0] |
|
for wave in sorted( |
|
processed_batches, key=lambda d: list(d.keys())[0] |
|
) |
|
] |
|
assert len(processed_batches) == len( |
|
waves |
|
), "Incomplete processed batches, please reduce batch size!" |
|
return self.segment(processed_batches, True, chunk) |
|
|
|
|
|
def run_mdx( |
|
model_params, |
|
output_dir, |
|
model_path, |
|
filename, |
|
exclude_main=False, |
|
exclude_inversion=False, |
|
suffix=None, |
|
invert_suffix=None, |
|
denoise=False, |
|
keep_orig=True, |
|
m_threads=2, |
|
device_base="cuda", |
|
): |
|
if device_base == "cuda": |
|
device = torch.device("cuda:0") |
|
processor_num = 0 |
|
device_properties = torch.cuda.get_device_properties(device) |
|
vram_gb = device_properties.total_memory / 1024**3 |
|
m_threads = 1 if vram_gb < 8 else 2 |
|
else: |
|
device = torch.device("cpu") |
|
processor_num = -1 |
|
m_threads = 1 |
|
|
|
model_hash = MDX.get_hash(model_path) |
|
mp = model_params.get(model_hash) |
|
model = MDXModel( |
|
device, |
|
dim_f=mp["mdx_dim_f_set"], |
|
dim_t=2 ** mp["mdx_dim_t_set"], |
|
n_fft=mp["mdx_n_fft_scale_set"], |
|
stem_name=mp["primary_stem"], |
|
compensation=mp["compensate"], |
|
) |
|
|
|
mdx_sess = MDX(model_path, model, processor=processor_num) |
|
wave, sr = librosa.load(filename, mono=False, sr=44100) |
|
|
|
peak = max(np.max(wave), abs(np.min(wave))) |
|
wave /= peak |
|
if denoise: |
|
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + ( |
|
mdx_sess.process_wave(wave, m_threads) |
|
) |
|
wave_processed *= 0.5 |
|
else: |
|
wave_processed = mdx_sess.process_wave(wave, m_threads) |
|
|
|
wave_processed *= peak |
|
stem_name = model.stem_name if suffix is None else suffix |
|
|
|
main_filepath = None |
|
if not exclude_main: |
|
main_filepath = os.path.join( |
|
output_dir, |
|
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav", |
|
) |
|
sf.write(main_filepath, wave_processed.T, sr) |
|
|
|
invert_filepath = None |
|
if not exclude_inversion: |
|
diff_stem_name = ( |
|
stem_naming.get(stem_name) |
|
if invert_suffix is None |
|
else invert_suffix |
|
) |
|
stem_name = ( |
|
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name |
|
) |
|
invert_filepath = os.path.join( |
|
output_dir, |
|
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav", |
|
) |
|
sf.write( |
|
invert_filepath, |
|
(-wave_processed.T * model.compensation) + wave.T, |
|
sr, |
|
) |
|
|
|
if not keep_orig: |
|
os.remove(filename) |
|
|
|
del mdx_sess, wave_processed, wave |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
return main_filepath, invert_filepath |
|
|
|
|
|
MDX_DOWNLOAD_LINK = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/" |
|
UVR_MODELS = [ |
|
"UVR-MDX-NET-Voc_FT.onnx", |
|
"UVR_MDXNET_KARA_2.onnx", |
|
"Reverb_HQ_By_FoxJoy.onnx", |
|
"UVR-MDX-NET-Inst_HQ_4.onnx", |
|
] |
|
BASE_DIR = "." |
|
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models") |
|
output_dir = os.path.join(BASE_DIR, "clean_song_output") |
|
|
|
|
|
def convert_to_stereo_and_wav(audio_path): |
|
wave, sr = librosa.load(audio_path, mono=False, sr=44100) |
|
|
|
|
|
if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav": |
|
stereo_path = f"{os.path.splitext(audio_path)[0]}_stereo.wav" |
|
stereo_path = os.path.join(output_dir, stereo_path) |
|
|
|
command = shlex.split( |
|
f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"' |
|
) |
|
sub_params = { |
|
"stdout": subprocess.PIPE, |
|
"stderr": subprocess.PIPE, |
|
"creationflags": subprocess.CREATE_NO_WINDOW |
|
if sys.platform == "win32" |
|
else 0, |
|
} |
|
process_wav = subprocess.Popen(command, **sub_params) |
|
output, errors = process_wav.communicate() |
|
if process_wav.returncode != 0 or not os.path.exists(stereo_path): |
|
raise Exception("Error processing audio to stereo wav") |
|
|
|
return stereo_path |
|
else: |
|
return audio_path |
|
|
|
|
|
def process_uvr_task( |
|
orig_song_path: str = "aud_test.mp3", |
|
main_vocals: bool = False, |
|
dereverb: bool = True, |
|
song_id: str = "mdx", |
|
only_voiceless: bool = False, |
|
remove_files_output_dir: bool = False, |
|
): |
|
if os.environ.get("SONITR_DEVICE") == "cpu": |
|
device_base = "cpu" |
|
else: |
|
device_base = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if remove_files_output_dir: |
|
remove_directory_contents(output_dir) |
|
|
|
with open(os.path.join(mdxnet_models_dir, "data.json")) as infile: |
|
mdx_model_params = json.load(infile) |
|
|
|
song_output_dir = os.path.join(output_dir, song_id) |
|
create_directories(song_output_dir) |
|
orig_song_path = convert_to_stereo_and_wav(orig_song_path) |
|
|
|
logger.debug(f"onnxruntime device >> {ort.get_device()}") |
|
|
|
if only_voiceless: |
|
logger.info("Voiceless Track Separation...") |
|
return run_mdx( |
|
mdx_model_params, |
|
song_output_dir, |
|
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Inst_HQ_4.onnx"), |
|
orig_song_path, |
|
suffix="Voiceless", |
|
denoise=False, |
|
keep_orig=True, |
|
exclude_inversion=True, |
|
device_base=device_base, |
|
) |
|
|
|
logger.info("Vocal Track Isolation and Voiceless Track Separation...") |
|
vocals_path, instrumentals_path = run_mdx( |
|
mdx_model_params, |
|
song_output_dir, |
|
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Voc_FT.onnx"), |
|
orig_song_path, |
|
denoise=True, |
|
keep_orig=True, |
|
device_base=device_base, |
|
) |
|
|
|
if main_vocals: |
|
logger.info("Main Voice Separation from Supporting Vocals...") |
|
backup_vocals_path, main_vocals_path = run_mdx( |
|
mdx_model_params, |
|
song_output_dir, |
|
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"), |
|
vocals_path, |
|
suffix="Backup", |
|
invert_suffix="Main", |
|
denoise=True, |
|
device_base=device_base, |
|
) |
|
else: |
|
backup_vocals_path, main_vocals_path = None, vocals_path |
|
|
|
if dereverb: |
|
logger.info("Vocal Clarity Enhancement through De-Reverberation...") |
|
_, vocals_dereverb_path = run_mdx( |
|
mdx_model_params, |
|
song_output_dir, |
|
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"), |
|
main_vocals_path, |
|
invert_suffix="DeReverb", |
|
exclude_main=True, |
|
denoise=True, |
|
device_base=device_base, |
|
) |
|
else: |
|
vocals_dereverb_path = main_vocals_path |
|
|
|
return ( |
|
vocals_path, |
|
instrumentals_path, |
|
backup_vocals_path, |
|
main_vocals_path, |
|
vocals_dereverb_path, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
from utils import download_manager |
|
|
|
for id_model in UVR_MODELS: |
|
download_manager( |
|
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir |
|
) |
|
( |
|
vocals_path_, |
|
instrumentals_path_, |
|
backup_vocals_path_, |
|
main_vocals_path_, |
|
vocals_dereverb_path_, |
|
) = process_uvr_task( |
|
orig_song_path="aud.mp3", |
|
main_vocals=True, |
|
dereverb=True, |
|
song_id="mdx", |
|
remove_files_output_dir=True, |
|
) |
|
|