Spaces:
Sleeping
Sleeping
# from ragatouille import RAGPretrainedModel | |
# import subprocess | |
# import json | |
# import spaces | |
# import firebase_admin | |
# from firebase_admin import credentials, firestore | |
# import logging | |
# from pathlib import Path | |
# from time import perf_counter | |
# from datetime import datetime | |
# import gradio as gr | |
# from jinja2 import Environment, FileSystemLoader | |
# import numpy as np | |
# from sentence_transformers import CrossEncoder | |
# from huggingface_hub import InferenceClient | |
# from os import getenv | |
# from backend.query_llm import generate_hf, generate_openai | |
# from backend.semantic_search import table, retriever | |
# from huggingface_hub import InferenceClient | |
# VECTOR_COLUMN_NAME = "vector" | |
# TEXT_COLUMN_NAME = "text" | |
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
# proj_dir = Path(__file__).parent | |
# # Setting up the logging | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN) | |
# # Set up the template environment with the templates directory | |
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# # Load the templates directly from the environment | |
# template = env.get_template('template.j2') | |
# template_html = env.get_template('template_html.j2') | |
# def system_instructions(question_difficulty, topic,documents_str): | |
# return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" | |
# RAG_db=gr.State() | |
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: | |
# def load_model(): | |
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# return 'Ready to Go!!' | |
# with gr.Column(scale=4): | |
# gr.HTML(""" | |
# <center> | |
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1> | |
# <h2>Generative AI-powered Capacity building for Training Officers</h2> | |
# <i>โ ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โ ๏ธ</i> | |
# </center> | |
# """) | |
# #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
# with gr.Column(scale=2): | |
# load_btn = gr.Button("Click to Load!๐") | |
# load_text=gr.Textbox() | |
# load_btn.click(load_model,[],load_text) | |
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") | |
# with gr.Row(): | |
# radio = gr.Radio( | |
# ["easy", "average", "hard"], label="How difficult should the quiz be?" | |
# ) | |
# generate_quiz_btn = gr.Button("Generate Quiz!๐") | |
# quiz_msg=gr.Textbox() | |
# question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( | |
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( | |
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False)] | |
# print(question_radios) | |
# @spaces.GPU | |
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz") | |
# def generate_quiz(question_difficulty, topic): | |
# top_k_rank=10 | |
# RAG_db_=RAG_db.value | |
# documents_full=RAG_db_.search(topic,k=top_k_rank) | |
# gr.Warning('Generation of Quiz may take 1 to 2 minute. Pls wait') | |
# generate_kwargs = dict( | |
# temperature=0.2, | |
# max_new_tokens=4000, | |
# top_p=0.95, | |
# repetition_penalty=1.0, | |
# do_sample=True, | |
# seed=42, | |
# ) | |
# question_radio_list = [] | |
# count=0 | |
# while count<=3: | |
# try: | |
# documents=[item['content'] for item in documents_full] | |
# document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)] | |
# documents_str='\n'.join(document_summaries) | |
# formatted_prompt = system_instructions( | |
# question_difficulty, topic,documents_str) | |
# print(formatted_prompt) | |
# pre_prompt = [ | |
# {"role": "system", "content": formatted_prompt} | |
# ] | |
# response = client.text_generation( | |
# formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, | |
# ) | |
# output_json = json.loads(f"{response}") | |
# print(response) | |
# print('output json', output_json) | |
# global quiz_data | |
# quiz_data = output_json | |
# for question_num in range(1, 11): | |
# question_key = f"Q{question_num}" | |
# answer_key = f"A{question_num}" | |
# question = quiz_data.get(question_key) | |
# answer = quiz_data.get(quiz_data.get(answer_key)) | |
# if not question or not answer: | |
# continue | |
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
# choice_list = [] | |
# for choice_key in choice_keys: | |
# choice = quiz_data.get(choice_key, "Choice not found") | |
# choice_list.append(f"{choice}") | |
# radio = gr.Radio(choices=choice_list, label=question, | |
# visible=True, interactive=True) | |
# question_radio_list.append(radio) | |
# if len(question_radio_list)==10: | |
# break | |
# else: | |
# print('10 questions not generated . So trying again!') | |
# count+=1 | |
# continue | |
# except Exception as e: | |
# count+=1 | |
# print(f"Exception occurred: {e}") | |
# if count==3: | |
# print('Retry exhausted') | |
# gr.Warning('Sorry. Pls try with another topic !') | |
# else: | |
# print(f"Trying again..{count} time...please wait") | |
# continue | |
# print('Question radio list ' , question_radio_list) | |
# return ['Quiz Generated!']+ question_radio_list | |
# check_button = gr.Button("Check Score") | |
# score_textbox = gr.Markdown() | |
# @check_button.click(inputs=question_radios, outputs=score_textbox) | |
# def compare_answers(*user_answers): | |
# user_anwser_list = [] | |
# user_anwser_list = user_answers | |
# answers_list = [] | |
# for question_num in range(1, 20): | |
# answer_key = f"A{question_num}" | |
# answer = quiz_data.get(quiz_data.get(answer_key)) | |
# if not answer: | |
# break | |
# answers_list.append(answer) | |
# score = 0 | |
# for item in user_anwser_list: | |
# if item in answers_list: | |
# score += 1 | |
# if score>5: | |
# message = f"### Good ! You got {score} over 10!" | |
# elif score>7: | |
# message = f"### Excellent ! You got {score} over 10!" | |
# else: | |
# message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !" | |
# return message | |
# QUIZBOT.queue() | |
# QUIZBOT.launch(debug=True) | |
# ################################################ | |
# from ragatouille import RAGPretrainedModel | |
# import subprocess | |
# import json | |
# import spaces | |
# import firebase_admin | |
# from firebase_admin import credentials, firestore | |
# import logging | |
# from pathlib import Path | |
# from time import perf_counter | |
# from datetime import datetime | |
# import gradio as gr | |
# from jinja2 import Environment, FileSystemLoader | |
# import numpy as np | |
# from sentence_transformers import CrossEncoder | |
# from os import getenv | |
# from backend.query_llm import generate_hf, generate_openai | |
# from backend.semantic_search import table, retriever | |
# from gradio_client import Client # Modified here | |
# VECTOR_COLUMN_NAME = "vector" | |
# TEXT_COLUMN_NAME = "text" | |
# proj_dir = Path(__file__).parent | |
# # Setting up the logging | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# # Replace Mixtral client with Qwen Client | |
# client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Modified here | |
# # Set up the template environment with the templates directory | |
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# # Load the templates directly from the environment | |
# template = env.get_template('template.j2') | |
# template_html = env.get_template('template_html.j2') | |
# def system_instructions(question_difficulty, topic, documents_str): | |
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]""" | |
# # RA | |
# RAG_db = gr.State() | |
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: | |
# def load_model(): | |
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# return 'Ready to Go!!' | |
# with gr.Column(scale=4): | |
# gr.HTML(""" | |
# <center> | |
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1> | |
# <h2>Generative AI-powered Capacity building for Training Officers</h2> | |
# <i>โ ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โ ๏ธ</i> | |
# </center> | |
# """) | |
# with gr.Column(scale=2): | |
# load_btn = gr.Button("Click to Load!๐") | |
# load_text = gr.Textbox() | |
# load_btn.click(load_model, [], load_text) | |
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") | |
# with gr.Row(): | |
# radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") | |
# generate_quiz_btn = gr.Button("Generate Quiz!๐") | |
# quiz_msg = gr.Textbox() | |
# question_radios = [gr.Radio(visible=False) for _ in range(10)] | |
# @spaces.GPU | |
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios, api_name="generate_quiz") | |
# def generate_quiz(question_difficulty, topic): | |
# top_k_rank = 10 | |
# RAG_db_ = RAG_db.value | |
# documents_full = RAG_db_.search(topic, k=top_k_rank) | |
# gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.') | |
# question_radio_list = [] | |
# count = 0 | |
# while count <= 3: | |
# try: | |
# documents = [item['content'] for item in documents_full] | |
# document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)] | |
# documents_str = '\n'.join(document_summaries) | |
# formatted_prompt = system_instructions(question_difficulty, topic, documents_str) | |
# print(formatted_prompt) | |
# # Use Qwen Client for quiz generation | |
# response = client.predict( | |
# query=formatted_prompt, | |
# history=[], | |
# system="You are a helpful assistant.", # Modified to match Qwen's API | |
# api_name="/model_chat" | |
# ) | |
# print(response) | |
# response1=response[1][0][1] | |
# # Find the first and last curly braces | |
# start_index = response1.find('{') | |
# end_index = response1.rfind('}') | |
# # Extract only the JSON part | |
# if start_index != -1 and end_index != -1: | |
# cleaned_response = response1[start_index:end_index + 1] # Include the last closing brace | |
# # Try parsing the cleaned JSON | |
# try: | |
# output_json = json.loads(cleaned_response) | |
# print('Parsed JSON:', output_json) # Successfully print the dictionary | |
# except json.JSONDecodeError as e: | |
# print(f"Failed to decode JSON: {e}") | |
# else: | |
# print("No valid JSON found in the response.") | |
# # output_json = json.loads(f"{response}") | |
# # print('output json', output_json) | |
# global quiz_data | |
# quiz_data = output_json | |
# for question_num in range(1, 11): | |
# question_key = f"Q{question_num}" | |
# answer_key = f"A{question_num}" | |
# question = quiz_data.get(question_key) | |
# answer = quiz_data.get(quiz_data.get(answer_key)) | |
# if not question or not answer: | |
# continue | |
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
# choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] | |
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) | |
# question_radio_list.append(radio) | |
# print('question_radio_list',question_radio_list) | |
# if len(question_radio_list) == 10: | |
# break | |
# else: | |
# print('10 questions not generated. Trying again!') | |
# count += 1 | |
# continue | |
# except Exception as e: | |
# count += 1 | |
# print(f"Exception occurred: {e}") | |
# if count == 3: | |
# print('Retry exhausted') | |
# gr.Warning('Sorry. Please try with another topic!') | |
# else: | |
# print(f"Trying again.. {count} time... please wait") | |
# continue | |
# return ['Quiz Generated!'] + question_radio_list | |
# check_button = gr.Button("Check Score") | |
# score_textbox = gr.Markdown() | |
# @check_button.click(inputs=question_radios, outputs=score_textbox) | |
# def compare_answers(*user_answers): | |
# user_anwser_list = list(user_answers) | |
# answers_list = [] | |
# for question_num in range(1, 20): | |
# answer_key = f"A{question_num}" | |
# answer = quiz_data.get(quiz_data.get(answer_key)) | |
# if not answer: | |
# break | |
# answers_list.append(answer) | |
# score = sum(1 for item in user_anwser_list if item in answers_list) | |
# if score > 5: | |
# message = f"### Good! You got {score} out of 10!" | |
# elif score > 7: | |
# message = f"### Excellent! You got {score} out of 10!" | |
# else: | |
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" | |
# return message | |
# QUIZBOT.queue() | |
# QUIZBOT.launch(debug=True) | |
##############?????????????????????????????? | |
import pandas as pd | |
import json | |
import gradio as gr | |
from pathlib import Path | |
from ragatouille import RAGPretrainedModel | |
from gradio_client import Client | |
from jinja2 import Environment, FileSystemLoader | |
VECTOR_COLUMN_NAME = "vector" | |
TEXT_COLUMN_NAME = "text" | |
proj_dir = Path(__file__).parent | |
# Setting up the logging | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Replace Mixtral client with Qwen Client | |
client = Client("Qwen/Qwen1.5-110B-Chat-demo") | |
# Set up the template environment with the templates directory | |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# Load the templates directly from the environment | |
template = env.get_template('template.j2') | |
template_html = env.get_template('template_html.j2') | |
def system_instructions(question_difficulty, topic, documents_str): | |
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]""" | |
# RA | |
RAG_db = gr.State() | |
def json_to_excel(output_json): | |
# Initialize list for DataFrame | |
data = [] | |
for i in range(1, 11): # Assuming there are 10 questions | |
question_key = f"Q{i}" | |
answer_key = f"A{i}" | |
question = output_json.get(question_key, '') | |
correct_answer_key = output_json.get(answer_key, '') | |
correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else '' | |
# Extract options | |
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)] | |
options = [output_json.get(key, '') for key in option_keys] | |
# Add data row | |
data.append([ | |
question, # Question Text | |
"Multiple Choice", # Question Type | |
options[0], # Option 1 | |
options[1], # Option 2 | |
options[2] if len(options) > 2 else '', # Option 3 | |
options[3] if len(options) > 3 else '', # Option 4 | |
options[4] if len(options) > 4 else '', # Option 5 | |
correct_answer, # Correct Answer | |
30, # Time in seconds | |
'' # Image Link | |
]) | |
# Create DataFrame | |
df = pd.DataFrame(data, columns=[ | |
"Question Text", | |
"Question Type", | |
"Option 1", | |
"Option 2", | |
"Option 3", | |
"Option 4", | |
"Option 5", | |
"Correct Answer", | |
"Time in seconds", | |
"Image Link" | |
]) | |
# Save to Excel file | |
excel_path = proj_dir / "quiz_questions.xlsx" | |
df.to_excel(excel_path, index=False) | |
return excel_path | |
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: | |
def load_model(): | |
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
return 'Ready to Go!!' | |
with gr.Column(scale=4): | |
gr.HTML(""" | |
<center> | |
<h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1> | |
<h2>Generative AI-powered Capacity building for Training Officers</h2> | |
<i>โ ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โ ๏ธ</i> | |
</center> | |
""") | |
with gr.Column(scale=2): | |
load_btn = gr.Button("Click to Load!๐") | |
load_text = gr.Textbox() | |
load_btn.click(load_model, [], load_text) | |
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") | |
with gr.Row(): | |
radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") | |
generate_quiz_btn = gr.Button("Generate Quiz!๐") | |
quiz_msg = gr.Textbox() | |
question_radios = [gr.Radio(visible=False) for _ in range(10)] | |
def generate_quiz(question_difficulty, topic): | |
top_k_rank = 10 | |
RAG_db_ = RAG_db.value | |
documents_full = RAG_db_.search(topic, k=top_k_rank) | |
gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.') | |
question_radio_list = [] | |
excel_file = None | |
count = 0 | |
while count <= 3: | |
try: | |
documents = [item['content'] for item in documents_full] | |
document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)] | |
documents_str = '\n'.join(document_summaries) | |
formatted_prompt = system_instructions(question_difficulty, topic, documents_str) | |
print(formatted_prompt) | |
# Use Qwen Client for quiz generation | |
response = client.predict( | |
query=formatted_prompt, | |
history=[], | |
system="You are a helpful assistant.", | |
api_name="/model_chat" | |
) | |
print(response) | |
response1 = response[1][0][1] | |
# Find the first and last curly braces | |
start_index = response1.find('{') | |
end_index = response1.rfind('}') | |
# Extract only the JSON part | |
if start_index != -1 and end_index != -1: | |
cleaned_response = response1[start_index:end_index + 1] | |
# Try parsing the cleaned JSON | |
try: | |
output_json = json.loads(cleaned_response) | |
print('Parsed JSON:', output_json) | |
global quiz_data | |
quiz_data = output_json | |
# Generate the Excel file | |
excel_file = json_to_excel(output_json) | |
for question_num in range(1, 11): | |
question_key = f"Q{question_num}" | |
answer_key = f"A{question_num}" | |
question = quiz_data.get(question_key) | |
answer = quiz_data.get(quiz_data.get(answer_key)) | |
if not question or not answer: | |
continue | |
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] | |
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) | |
question_radio_list.append(radio) | |
print('question_radio_list', question_radio_list) | |
if len(question_radio_list) == 10: | |
break | |
else: | |
print('10 questions not generated. Trying again!') | |
count += 1 | |
continue | |
except json.JSONDecodeError as e: | |
print(f"Failed to decode JSON: {e}") | |
else: | |
print("No valid JSON found in the response.") | |
except Exception as e: | |
count += 1 | |
print(f"Exception occurred: {e}") | |
if count == 3: | |
print('Retry exhausted') | |
gr.Warning('Sorry. Please try with another topic!') | |
else: | |
print(f"Trying again.. {count} time... please wait") | |
continue | |
return ['Quiz Generated!'] + question_radio_list + [excel_file] | |
check_button = gr.Button("Check Score") | |
score_textbox = gr.Markdown() | |
def compare_answers(*user_answers): | |
user_answer_list = list(user_answers) | |
answers_list = [] | |
for question_num in range(1, 20): | |
answer_key = f"A{question_num}" | |
answer = quiz_data.get(quiz_data.get(answer_key)) | |
if not answer: | |
break | |
answers_list.append(answer) | |
score = sum(1 for item in user_answer_list if item in answers_list) | |
if score > 7: | |
message = f"### Excellent! You got {score} out of 10!" | |
elif score > 5: | |
message = f"### Good! You got {score} out of 10!" | |
else: | |
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" | |
return message | |
QUIZBOT.queue() | |
QUIZBOT.launch(debug=True) | |