NCTCMumbai's picture
Update app.py
0aecf54 verified
raw
history blame
25.4 kB
# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from huggingface_hub import InferenceClient
# from os import getenv
# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from huggingface_hub import InferenceClient
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# def system_instructions(question_difficulty, topic,documents_str):
# return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""
# RAG_db=gr.State()
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
# def load_model():
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# return 'Ready to Go!!'
# with gr.Column(scale=4):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
# <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
# </center>
# """)
# #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# with gr.Column(scale=2):
# load_btn = gr.Button("Click to Load!๐Ÿš€")
# load_text=gr.Textbox()
# load_btn.click(load_model,[],load_text)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
# with gr.Row():
# radio = gr.Radio(
# ["easy", "average", "hard"], label="How difficult should the quiz be?"
# )
# generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
# quiz_msg=gr.Textbox()
# question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False)]
# print(question_radios)
# @spaces.GPU
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz")
# def generate_quiz(question_difficulty, topic):
# top_k_rank=10
# RAG_db_=RAG_db.value
# documents_full=RAG_db_.search(topic,k=top_k_rank)
# gr.Warning('Generation of Quiz may take 1 to 2 minute. Pls wait')
# generate_kwargs = dict(
# temperature=0.2,
# max_new_tokens=4000,
# top_p=0.95,
# repetition_penalty=1.0,
# do_sample=True,
# seed=42,
# )
# question_radio_list = []
# count=0
# while count<=3:
# try:
# documents=[item['content'] for item in documents_full]
# document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
# documents_str='\n'.join(document_summaries)
# formatted_prompt = system_instructions(
# question_difficulty, topic,documents_str)
# print(formatted_prompt)
# pre_prompt = [
# {"role": "system", "content": formatted_prompt}
# ]
# response = client.text_generation(
# formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
# )
# output_json = json.loads(f"{response}")
# print(response)
# print('output json', output_json)
# global quiz_data
# quiz_data = output_json
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = quiz_data.get(question_key)
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = []
# for choice_key in choice_keys:
# choice = quiz_data.get(choice_key, "Choice not found")
# choice_list.append(f"{choice}")
# radio = gr.Radio(choices=choice_list, label=question,
# visible=True, interactive=True)
# question_radio_list.append(radio)
# if len(question_radio_list)==10:
# break
# else:
# print('10 questions not generated . So trying again!')
# count+=1
# continue
# except Exception as e:
# count+=1
# print(f"Exception occurred: {e}")
# if count==3:
# print('Retry exhausted')
# gr.Warning('Sorry. Pls try with another topic !')
# else:
# print(f"Trying again..{count} time...please wait")
# continue
# print('Question radio list ' , question_radio_list)
# return ['Quiz Generated!']+ question_radio_list
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_anwser_list = []
# user_anwser_list = user_answers
# answers_list = []
# for question_num in range(1, 20):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = 0
# for item in user_anwser_list:
# if item in answers_list:
# score += 1
# if score>5:
# message = f"### Good ! You got {score} over 10!"
# elif score>7:
# message = f"### Excellent ! You got {score} over 10!"
# else:
# message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
# ################################################
# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from os import getenv
# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from gradio_client import Client # Modified here
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Replace Mixtral client with Qwen Client
# client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Modified here
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# def system_instructions(question_difficulty, topic, documents_str):
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""
# # RA
# RAG_db = gr.State()
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
# def load_model():
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# return 'Ready to Go!!'
# with gr.Column(scale=4):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
# <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
# </center>
# """)
# with gr.Column(scale=2):
# load_btn = gr.Button("Click to Load!๐Ÿš€")
# load_text = gr.Textbox()
# load_btn.click(load_model, [], load_text)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
# with gr.Row():
# radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
# generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
# quiz_msg = gr.Textbox()
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
# @spaces.GPU
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios, api_name="generate_quiz")
# def generate_quiz(question_difficulty, topic):
# top_k_rank = 10
# RAG_db_ = RAG_db.value
# documents_full = RAG_db_.search(topic, k=top_k_rank)
# gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')
# question_radio_list = []
# count = 0
# while count <= 3:
# try:
# documents = [item['content'] for item in documents_full]
# document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
# documents_str = '\n'.join(document_summaries)
# formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
# print(formatted_prompt)
# # Use Qwen Client for quiz generation
# response = client.predict(
# query=formatted_prompt,
# history=[],
# system="You are a helpful assistant.", # Modified to match Qwen's API
# api_name="/model_chat"
# )
# print(response)
# response1=response[1][0][1]
# # Find the first and last curly braces
# start_index = response1.find('{')
# end_index = response1.rfind('}')
# # Extract only the JSON part
# if start_index != -1 and end_index != -1:
# cleaned_response = response1[start_index:end_index + 1] # Include the last closing brace
# # Try parsing the cleaned JSON
# try:
# output_json = json.loads(cleaned_response)
# print('Parsed JSON:', output_json) # Successfully print the dictionary
# except json.JSONDecodeError as e:
# print(f"Failed to decode JSON: {e}")
# else:
# print("No valid JSON found in the response.")
# # output_json = json.loads(f"{response}")
# # print('output json', output_json)
# global quiz_data
# quiz_data = output_json
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = quiz_data.get(question_key)
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# question_radio_list.append(radio)
# print('question_radio_list',question_radio_list)
# if len(question_radio_list) == 10:
# break
# else:
# print('10 questions not generated. Trying again!')
# count += 1
# continue
# except Exception as e:
# count += 1
# print(f"Exception occurred: {e}")
# if count == 3:
# print('Retry exhausted')
# gr.Warning('Sorry. Please try with another topic!')
# else:
# print(f"Trying again.. {count} time... please wait")
# continue
# return ['Quiz Generated!'] + question_radio_list
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_anwser_list = list(user_answers)
# answers_list = []
# for question_num in range(1, 20):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = sum(1 for item in user_anwser_list if item in answers_list)
# if score > 5:
# message = f"### Good! You got {score} out of 10!"
# elif score > 7:
# message = f"### Excellent! You got {score} out of 10!"
# else:
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
##############??????????????????????????????
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from jinja2 import Environment, FileSystemLoader
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path(__file__).parent
# Setting up the logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Replace Mixtral client with Qwen Client
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
def system_instructions(question_difficulty, topic, documents_str):
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""
# RA
RAG_db = gr.State()
def json_to_excel(output_json):
# Initialize list for DataFrame
data = []
for i in range(1, 11): # Assuming there are 10 questions
question_key = f"Q{i}"
answer_key = f"A{i}"
question = output_json.get(question_key, '')
correct_answer_key = output_json.get(answer_key, '')
correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
# Extract options
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
options = [output_json.get(key, '') for key in option_keys]
# Add data row
data.append([
question, # Question Text
"Multiple Choice", # Question Type
options[0], # Option 1
options[1], # Option 2
options[2] if len(options) > 2 else '', # Option 3
options[3] if len(options) > 3 else '', # Option 4
options[4] if len(options) > 4 else '', # Option 5
correct_answer, # Correct Answer
30, # Time in seconds
'' # Image Link
])
# Create DataFrame
df = pd.DataFrame(data, columns=[
"Question Text",
"Question Type",
"Option 1",
"Option 2",
"Option 3",
"Option 4",
"Option 5",
"Correct Answer",
"Time in seconds",
"Image Link"
])
# Save to Excel file
excel_path = proj_dir / "quiz_questions.xlsx"
df.to_excel(excel_path, index=False)
return excel_path
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
def load_model():
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
return 'Ready to Go!!'
with gr.Column(scale=4):
gr.HTML("""
<center>
<h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
<h2>Generative AI-powered Capacity building for Training Officers</h2>
<i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
</center>
""")
with gr.Column(scale=2):
load_btn = gr.Button("Click to Load!๐Ÿš€")
load_text = gr.Textbox()
load_btn.click(load_model, [], load_text)
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
with gr.Row():
radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
quiz_msg = gr.Textbox()
question_radios = [gr.Radio(visible=False) for _ in range(10)]
@gr.dependencies.GPU
@generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], api_name="generate_quiz")
def generate_quiz(question_difficulty, topic):
top_k_rank = 10
RAG_db_ = RAG_db.value
documents_full = RAG_db_.search(topic, k=top_k_rank)
gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')
question_radio_list = []
excel_file = None
count = 0
while count <= 3:
try:
documents = [item['content'] for item in documents_full]
document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
documents_str = '\n'.join(document_summaries)
formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
print(formatted_prompt)
# Use Qwen Client for quiz generation
response = client.predict(
query=formatted_prompt,
history=[],
system="You are a helpful assistant.",
api_name="/model_chat"
)
print(response)
response1 = response[1][0][1]
# Find the first and last curly braces
start_index = response1.find('{')
end_index = response1.rfind('}')
# Extract only the JSON part
if start_index != -1 and end_index != -1:
cleaned_response = response1[start_index:end_index + 1]
# Try parsing the cleaned JSON
try:
output_json = json.loads(cleaned_response)
print('Parsed JSON:', output_json)
global quiz_data
quiz_data = output_json
# Generate the Excel file
excel_file = json_to_excel(output_json)
for question_num in range(1, 11):
question_key = f"Q{question_num}"
answer_key = f"A{question_num}"
question = quiz_data.get(question_key)
answer = quiz_data.get(quiz_data.get(answer_key))
if not question or not answer:
continue
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
question_radio_list.append(radio)
print('question_radio_list', question_radio_list)
if len(question_radio_list) == 10:
break
else:
print('10 questions not generated. Trying again!')
count += 1
continue
except json.JSONDecodeError as e:
print(f"Failed to decode JSON: {e}")
else:
print("No valid JSON found in the response.")
except Exception as e:
count += 1
print(f"Exception occurred: {e}")
if count == 3:
print('Retry exhausted')
gr.Warning('Sorry. Please try with another topic!')
else:
print(f"Trying again.. {count} time... please wait")
continue
return ['Quiz Generated!'] + question_radio_list + [excel_file]
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_radios, outputs=score_textbox)
def compare_answers(*user_answers):
user_answer_list = list(user_answers)
answers_list = []
for question_num in range(1, 20):
answer_key = f"A{question_num}"
answer = quiz_data.get(quiz_data.get(answer_key))
if not answer:
break
answers_list.append(answer)
score = sum(1 for item in user_answer_list if item in answers_list)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
QUIZBOT.queue()
QUIZBOT.launch(debug=True)