Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import onnxruntime as ort | |
from PIL import Image | |
import requests | |
import numpy as np | |
from transformers import AutoTokenizer, AutoProcessor | |
import os | |
if not os.path.exists("vision_encoder_q4f16.onnx"): | |
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/vision_encoder_q4f16.onnx') | |
if not os.path.exists("decoder_model_merged_q4f16.onnx"): | |
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/decoder_model_merged_q4f16.onnx') | |
if not os.path.exists("embed_tokens_q4f16.onnx"): | |
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/embed_tokens_q4f16.onnx') | |
# Load the tokenizer and processor | |
tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf") | |
processor = AutoProcessor.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf") | |
vision_encoder_session = ort.InferenceSession("vision_encoder_q4f16.onnx") | |
decoder_session = ort.InferenceSession("decoder_model_merged_q4f16.onnx") | |
embed_tokens_session = ort.InferenceSession("embed_tokens_q4f16.onnx") | |
def merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask,pad_token_id,special_image_token_id): | |
num_images, num_image_patches, embed_dim = image_features.shape | |
batch_size, sequence_length = input_ids.shape | |
left_padding = not np.sum(input_ids[:, -1] == pad_token_id) | |
# 1. Create a mask to know where special image tokens are | |
special_image_token_mask = input_ids == special_image_token_id | |
num_special_image_tokens = np.sum(special_image_token_mask, axis=-1) | |
# Compute the maximum embed dimension | |
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length | |
batch_indices, non_image_indices = np.where(input_ids != special_image_token_id) | |
# 2. Compute the positions where text should be written | |
# Calculate new positions for text tokens in merged image-text sequence. | |
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. | |
# `np.cumsum` computes how each image token shifts subsequent text token positions. | |
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. | |
new_token_positions = np.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 | |
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] | |
if left_padding: | |
new_token_positions += nb_image_pad[:, None] # offset for left padding | |
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] | |
# 3. Create the full embedding, already padded to the maximum position | |
final_embedding = np.zeros((batch_size, max_embed_dim, embed_dim), dtype=np.float32) | |
final_attention_mask = np.zeros((batch_size, max_embed_dim), dtype=np.int64) | |
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] | |
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features | |
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] | |
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] | |
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) | |
image_to_overwrite = np.full((batch_size, max_embed_dim), True) | |
image_to_overwrite[batch_indices, text_to_overwrite] = False | |
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None] | |
final_embedding[image_to_overwrite] = image_features.reshape(-1, embed_dim) | |
final_attention_mask = np.logical_or(final_attention_mask, image_to_overwrite).astype(final_attention_mask.dtype) | |
position_ids = final_attention_mask.cumsum(axis=-1) - 1 | |
position_ids = np.where(final_attention_mask == 0, 1, position_ids) | |
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. | |
batch_indices, pad_indices = np.where(input_ids == pad_token_id) | |
indices_to_mask = new_token_positions[batch_indices, pad_indices] | |
final_embedding[batch_indices, indices_to_mask] = 0 | |
return final_embedding, final_attention_mask, position_ids | |
# Load model and processor | |
def describe_image(image): | |
if(image.mode != 'RGB'): | |
image = image.convert('RGB') | |
conversation = [ | |
{ | |
"role": "system", | |
"content": "You are a helpful assistant who describes image." | |
}, | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "Describe this image in about 200 words and explain each and every element in full detail"}, | |
{"type": "image"}, | |
], | |
}, | |
] | |
# Apply chat template | |
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) | |
# Preprocess the image and text | |
inputs = processor(images=image, text=prompt, return_tensors="np") | |
vision_input_name = vision_encoder_session.get_inputs()[0].name | |
vision_output_name = vision_encoder_session.get_outputs()[0].name | |
vision_features = vision_encoder_session.run([vision_output_name], {vision_input_name: inputs["pixel_values"]})[0] | |
# print('Total Time for Image Features Making ', time.time() - start) | |
# Tokens for the prompt | |
input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"] | |
# Prepare inputs | |
sequence_length = input_ids.shape[1] | |
batch_size = 1 | |
num_layers = 24 | |
head_dim = 64 | |
num_heads = 16 | |
pad_token_id = tokenizer.pad_token_id | |
past_sequence_length = 0 # Set to 0 for the initial pass | |
special_image_token_id = 151646 | |
# Position IDs | |
position_ids = np.arange(sequence_length, dtype=np.int64).reshape(1, -1) | |
# Past Key Values | |
past_key_values = { | |
f"past_key_values.{i}.key": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32) | |
for i in range(num_layers) | |
} | |
past_key_values.update({ | |
f"past_key_values.{i}.value": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32) | |
for i in range(num_layers) | |
}) | |
# Run embed tokens | |
embed_input_name = embed_tokens_session.get_inputs()[0].name | |
embed_output_name = embed_tokens_session.get_outputs()[0].name | |
token_embeddings = embed_tokens_session.run([embed_output_name], {embed_input_name: input_ids})[0] | |
# Combine token embeddings and vision features | |
combined_embeddings, attention_mask, position_ids = merge_input_ids_with_image_features(vision_features, token_embeddings, input_ids, attention_mask,pad_token_id,special_image_token_id) | |
combined_len = combined_embeddings.shape[1] | |
# Combine all inputs | |
decoder_inputs = { | |
"attention_mask": attention_mask, | |
"position_ids": position_ids, | |
"inputs_embeds": combined_embeddings, | |
**past_key_values | |
} | |
# Print input shapes | |
for name, value in decoder_inputs.items(): | |
print(f"{name} shape: {value.shape} dtype {value.dtype}") | |
# Run the decoder | |
decoder_input_names = [input.name for input in decoder_session.get_inputs()] | |
decoder_output_name = decoder_session.get_outputs()[0].name | |
names = [n.name for n in decoder_session.get_outputs()] | |
outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs}) | |
# ... (previous code remains the same until after the decoder run) | |
# print(f"Outputs shape: {outputs[0].shape}") | |
# print(f"Outputs type: {outputs[0].dtype}") | |
# Process outputs (decode tokens to text) | |
generated_tokens = [] | |
eos_token_id = tokenizer.eos_token_id | |
max_new_tokens = 2048 | |
for i in range(max_new_tokens): | |
logits = outputs[0] | |
past_kv = outputs[1:] | |
logits_next_token = logits[:, -1] | |
token_id = np.argmax(logits_next_token) | |
if token_id == eos_token_id: | |
break | |
generated_tokens.append(token_id) | |
# Prepare input for next token generation | |
new_input_embeds = embed_tokens_session.run([embed_output_name], {embed_input_name: np.array([[token_id]])})[0] | |
past_key_values = {name.replace("present", "past_key_values"): value for name, value in zip(names[1:], outputs[1:])} | |
attention_mask = np.ones((1, combined_len + i + 1), dtype=np.int64) | |
position_ids = np.arange(combined_len + i + 1, dtype=np.int64).reshape(1, -1)[:, -1:] | |
decoder_inputs = { | |
"attention_mask": attention_mask, | |
"position_ids": position_ids, | |
"inputs_embeds": new_input_embeds, | |
**past_key_values | |
} | |
outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs}) | |
# Convert to list of integers | |
token_ids = [int(token) for token in generated_tokens] | |
print(f"Generated token IDs: {token_ids}") | |
# Decode tokens one by one | |
decoded_tokens = [tokenizer.decode([token]) for token in token_ids] | |
print(f"Decoded tokens: {decoded_tokens}") | |
# Full decoded output | |
decoded_output = tokenizer.decode(token_ids, skip_special_tokens=True) | |
return decoded_output | |
# Streamlit app | |
st.title("Image Description Generator") | |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
image = Image.open(uploaded_image) | |
description = describe_image(image) | |
st.text_area("Description", description, height=300) |