RAG / app.py
NilavoBoral's picture
Create app.py
3ab3d0b
import pandas as pd
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
import pinecone
import time
from datasets import load_dataset
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from typing_extensions import Concatenate
from torch import cuda, bfloat16
import transformers
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import Pinecone
from langchain.chains import RetrievalQA
import gradio as gr
# Define the model from Hugging Face
model_id = 'meta-llama/Llama-2-13b-chat-hf'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
# set quantization configuration to load large model with less GPU memory
# this requires the `bitsandbytes` library
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
# begin initializing HF items, need auth token for these
hf_auth = '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'
model_config = transformers.AutoConfig.from_pretrained(
model_id,
use_auth_token=hf_auth
)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
config=model_config,
quantization_config=bnb_config,
device_map='auto',
use_auth_token=hf_auth
)
model.eval()
# Define the tokenizer from Hugging Face
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_id,
use_auth_token=hf_auth
)
generate_text = transformers.pipeline(
model=model, tokenizer=tokenizer,
return_full_text=True, # langchain expects the full text
task='text-generation',
# we pass model parameters here too
temperature=0.0, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
max_new_tokens=512, # mex number of tokens to generate in the output
repetition_penalty=1.1 # without this output begins repeating
)
llm = HuggingFacePipeline(pipeline=generate_text)
# get API key from app.pinecone.io and environment from console
pinecone.init(
environment="gcp-starter",
api_key="a7dddfc1-8eb3-477e-bc69-0b52f0ee201a"
)
index_name = 'rag-llama-2-paper'
index = pinecone.Index(index_name)
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
embed_model = HuggingFaceEmbeddings(
model_name=embed_model_id,
model_kwargs={'device': device},
encode_kwargs={'device': device, 'batch_size': 32}
)
text_field = 'text' # field in metadata that contains text content
vectorstore = Pinecone(
index, embed_model.embed_query, text_field
)
rag_pipeline = RetrievalQA.from_chain_type(
llm=llm, chain_type='stuff',
retriever=vectorstore.as_retriever()
)
# Function to generate text using the model
def answer(Question):
return rag_pipeline(Question)['result']
# Create a Gradio interface
iface = gr.Interface(
fn=answer,
inputs=gr.Textbox(Question="Ask your query"),
outputs=gr.Textbox(),
title="Know Llama-2",
description="Ask the Llama-2-13b model anything about itself.",
)
# Launch the Gradio app
iface.launch()