File size: 8,359 Bytes
ce4236e
0d0c645
 
 
 
 
99d52d8
 
 
 
ce4236e
 
0d0c645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4236e
0d0c645
 
 
 
 
 
 
5272e74
 
 
 
 
 
 
 
 
 
 
 
 
3023ae4
5272e74
 
 
 
3023ae4
 
5272e74
 
ce4236e
 
f3fa8cc
 
 
ce4236e
 
f3fa8cc
ce4236e
 
 
 
 
f3fa8cc
 
 
ce4236e
 
f3fa8cc
ce4236e
f3fa8cc
ce4236e
 
3023ae4
f3fa8cc
 
 
3023ae4
f3fa8cc
3023ae4
 
 
 
 
f3fa8cc
 
 
3023ae4
f3fa8cc
3023ae4
 
 
 
 
ce4236e
 
3023ae4
ce4236e
3023ae4
 
ce4236e
 
 
 
7ef3dbe
 
3023ae4
 
ce4236e
 
 
242350b
ce4236e
 
5272e74
 
ce4236e
886edf2
5272e74
886edf2
5272e74
 
 
886edf2
 
 
5272e74
886edf2
5272e74
886edf2
 
5272e74
 
 
 
886edf2
ab8372d
886edf2
5272e74
ba43ebe
99d52d8
ba43ebe
 
 
 
648e88d
ba43ebe
 
 
99d52d8
 
 
 
 
 
 
445015e
 
 
 
99d52d8
 
445015e
99d52d8
445015e
99d52d8
 
 
 
445015e
99d52d8
f008b9e
dd4858e
99d52d8
8a56ec1
f008b9e
8a56ec1
 
 
f008b9e
 
8a56ec1
 
f008b9e
8a56ec1
ba43ebe
24d7d26
f008b9e
 
7274bd3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from keras.models import load_model
import random

# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
    tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
    tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')


ntmap = {'A': (1, 0, 0, 0),
         'C': (0, 1, 0, 0),
         'G': (0, 0, 1, 0),
         'T': (0, 0, 0, 1)
         }

def get_seqcode(seq):
    return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
        (1, len(seq), -1))

from keras.models import load_model
class DCModelOntar:
    def __init__(self, ontar_model_dir, is_reg=False):
        self.model = load_model(ontar_model_dir)

    def ontar_predict(self, x, channel_first=True):
        if channel_first:
            x = x.transpose([0, 2, 3, 1])
        yp = self.model.predict(x)
        return yp.ravel()

# Function to predict on-target efficiency and format output
def format_prediction_output(targets, model_path):
    dcModel = DCModelOntar(model_path)
    formatted_data = []

    for target in targets:
        # Encode the gRNA sequence
        encoded_seq = get_seqcode(target[0]).reshape(-1,4,1,23)

        # Predict on-target efficiency using the model
        prediction = dcModel.ontar_predict(encoded_seq)

        # Format output
        sgRNA = target[1]
        chr = target[2]
        start = target[3]
        end = target[4]
        strand = target[5]
        transcript_id = target[6]
        formatted_data.append([chr, start, end, strand, transcript_id, target[0], sgRNA, prediction[0]])

    return formatted_data

def fetch_ensembl_transcripts(gene_symbol):
    headers = {"Content-Type": "application/json"}
    url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1"
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        gene_data = response.json()
        return gene_data.get('Transcript', [])
    else:
        print(f"Error fetching gene data from Ensembl: {response.text}")
        return None

def fetch_ensembl_sequence(transcript_id):
    headers = {"Content-Type": "application/json"}
    url = f"https://rest.ensembl.org/sequence/id/{transcript_id}"
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        sequence_data = response.json()
        return sequence_data.get('seq', '')
    else:
        print(f"Error fetching sequence data from Ensembl for transcript {transcript_id}: {response.text}")
        return None

def fetch_ensembl_exons(transcript_id):
    headers = {"Content-Type": "application/json"}
    url = f"https://rest.ensembl.org/overlap/id/{transcript_id}?feature=exon"
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        return response.json()
    else:
        print(f"Error fetching exon data from Ensembl for transcript {transcript_id}: {response.text}")
        return None

def fetch_ensembl_cds(transcript_id):
    headers = {"Content-Type": "application/json"}
    url = f"https://rest.ensembl.org/overlap/id/{transcript_id}?feature=cds"
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        return response.json()
    else:
        print(f"Error fetching CDS data from Ensembl for transcript {transcript_id}: {response.text}")
        return None

def find_crispr_targets(sequence, chr, start, strand, transcript_id, pam="NGG", target_length=20):
    targets = []
    len_sequence = len(sequence)
    complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}

    if strand == -1:
        sequence = ''.join([complement[base] for base in reversed(sequence)])
    for i in range(len_sequence - len(pam) + 1):
        if sequence[i + 1:i + 3] == pam[1:]:
            if i >= target_length:
                target_seq = sequence[i - target_length:i + 3]
                tar_start = start + i - target_length
                tar_end = start + i + 3
                sgRNA = sequence[i - target_length:i]
                targets.append([target_seq, sgRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id])

    return targets


def process_gene(gene_symbol, model_path):
    transcripts = fetch_ensembl_transcripts(gene_symbol)
    all_data = []

    if transcripts:
        cdslist = fetch_ensembl_cds(transcripts[0].get('id'))
        for transcript in transcripts:
            transcript_id = transcript.get('id')
            chr = transcript.get('seq_region_name', 'unknown')
            start = transcript.get('start', 0)
            strand = transcript.get('strand', 'unknown')
            # Fetch the gene sequence for each transcript
            gene_sequence = fetch_ensembl_sequence(transcript_id) or ''
            # Fetch exon and CDS information is not directly used here but you may need it elsewhere
            exons = fetch_ensembl_exons(transcript_id)

            if gene_sequence:
                # Now correctly passing transcript_id as an argument
                gRNA_sites = find_crispr_targets(gene_sequence, chr, start, strand, transcript_id)
                if gRNA_sites:
                    formatted_data = format_prediction_output(gRNA_sites, model_path)
                    all_data.extend(formatted_data)

    # Return the data and potentially any other information as needed
    return all_data, gene_sequence, exons, cdslist


def create_genbank_features(formatted_data):
    features = []
    for data in formatted_data:
        # Strand conversion to Biopython's convention
        strand = 1 if data[3] == '+' else -1
        location = FeatureLocation(start=int(data[1]), end=int(data[2]), strand=strand)
        feature = SeqFeature(location=location, type="misc_feature", qualifiers={
            'label': data[5],  # Use gRNA as the label
            'target': data[4],  # Include the target sequence
            'note': f"Prediction: {data[6]}"  # Include the prediction score
        })
        features.append(feature)
    return features

def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
    features = []
    for index, row in df.iterrows():
        # Use 'Transcript ID' if it exists, otherwise use a default value like 'Unknown'
        transcript_id = row.get("Transcript ID", "Unknown")

        # Make sure to use the correct column names for Start Pos, End Pos, and Strand
        location = FeatureLocation(start=int(row["Start Pos"]),
                                   end=int(row["End Pos"]),
                                   strand=1 if row["Strand"] == '+' else -1)
        feature = SeqFeature(location=location, type="gene", qualifiers={
            'locus_tag': transcript_id,  # Now using the variable that holds the safe value
            'note': f"gRNA: {row['gRNA']}, Prediction: {row['Prediction']}"
        })
        features.append(feature)

    # The rest of the function remains unchanged
    record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
                       description=f'CRISPR Cas9 predicted targets for {gene_symbol}', features=features)
    record.annotations["molecule_type"] = "DNA"
    SeqIO.write(record, output_path, "genbank")


def create_bed_file_from_df(df, output_path):
    with open(output_path, 'w') as bed_file:
        for index, row in df.iterrows():
            # Adjust field names based on your actual formatted data
            chrom = row["Chr"]
            start = int(row["Start Pos"])
            end = int(row["End Pos"])
            strand = '+' if row["Strand"] == '+' else '-'  # Ensure strand is correctly interpreted
            gRNA = row["gRNA"]
            score = str(row["Prediction"])  # Ensure score is converted to string if not already
            transcript_id = row["Transcript"]  # Extract transcript ID
            bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\t{transcript_id}\n")  # Include transcript ID in BED output


def create_csv_from_df(df, output_path):
    df.to_csv(output_path, index=False)