Spaces:
Running
Running
supercat666
commited on
Commit
•
66c57f6
1
Parent(s):
c0e089e
fixed cas9off
Browse files- app.py +6 -2
- cas9off.py +26 -24
app.py
CHANGED
@@ -132,10 +132,10 @@ if selected_model == 'Cas9':
|
|
132 |
|
133 |
# prediction button
|
134 |
if st.button('Predict off-target effects'):
|
135 |
-
if st.session_state.entry_method == 'manual':
|
136 |
user_input = st.session_state.manual_entry
|
137 |
predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
|
138 |
-
elif st.session_state.entry_method == 'txt':
|
139 |
uploaded_file = st.session_state.txt_entry
|
140 |
if uploaded_file is not None:
|
141 |
# Read the uploaded file content
|
@@ -143,6 +143,10 @@ if selected_model == 'Cas9':
|
|
143 |
predictions = cas9off.process_input_and_predict(file_content, input_type='manual')
|
144 |
|
145 |
st.session_state.off_target_results = predictions
|
|
|
|
|
|
|
|
|
146 |
progress = st.empty()
|
147 |
|
148 |
# input error display
|
|
|
132 |
|
133 |
# prediction button
|
134 |
if st.button('Predict off-target effects'):
|
135 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
136 |
user_input = st.session_state.manual_entry
|
137 |
predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
|
138 |
+
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
|
139 |
uploaded_file = st.session_state.txt_entry
|
140 |
if uploaded_file is not None:
|
141 |
# Read the uploaded file content
|
|
|
143 |
predictions = cas9off.process_input_and_predict(file_content, input_type='manual')
|
144 |
|
145 |
st.session_state.off_target_results = predictions
|
146 |
+
else:
|
147 |
+
# Ensure that 'predictions' is defined even if the button hasn't been clicked
|
148 |
+
predictions = None
|
149 |
+
|
150 |
progress = st.empty()
|
151 |
|
152 |
# input error display
|
cas9off.py
CHANGED
@@ -82,9 +82,34 @@ class Encoder:
|
|
82 |
self.on_off_code = np.array(on_off_dim7_codes)
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def process_input_and_predict(input_data, input_type='manual'):
|
86 |
"""
|
87 |
-
Process the user input and predict
|
88 |
|
89 |
Args:
|
90 |
input_data: A string of manual input or the path to an input file.
|
@@ -119,29 +144,6 @@ def process_input_and_predict(input_data, input_type='manual'):
|
|
119 |
|
120 |
return inputs
|
121 |
|
122 |
-
def encode_on_off_seq_pairs(input_file):
|
123 |
-
inputs = pd.read_csv(input_file, delimiter=",", header=None, names=['on_seq', 'off_seq'])
|
124 |
-
input_codes = []
|
125 |
-
for idx, row in inputs.iterrows():
|
126 |
-
on_seq = row['on_seq']
|
127 |
-
off_seq = row['off_seq']
|
128 |
-
en = Encoder(on_seq=on_seq, off_seq=off_seq)
|
129 |
-
input_codes.append(en.on_off_code)
|
130 |
-
input_codes = np.array(input_codes)
|
131 |
-
input_codes = input_codes.reshape((len(input_codes), 1, 24, 7))
|
132 |
-
y_pred = CRISPR_net_predict(input_codes)
|
133 |
-
inputs['CRISPR_Net_score'] = y_pred
|
134 |
-
inputs.to_csv("CRISPR_net_results.csv", index=False)
|
135 |
-
|
136 |
-
def CRISPR_net_predict(X_test):
|
137 |
-
json_file = open("cas9_model/CRISPR_Net_CIRCLE_elevation_SITE_structure.json", 'r')
|
138 |
-
loaded_model_json = json_file.read()
|
139 |
-
json_file.close()
|
140 |
-
loaded_model = tf.keras.models.model_from_json(loaded_model_json) # Updated for TensorFlow 2
|
141 |
-
loaded_model.load_weights("cas9_model/CRISPR_Net_CIRCLE_elevation_SITE_weights.h5")
|
142 |
-
y_pred = loaded_model.predict(X_test).flatten()
|
143 |
-
return y_pred
|
144 |
-
|
145 |
if __name__ == '__main__':
|
146 |
parser = argparse.ArgumentParser(description="CRISPR-Net v1.0 (Aug 10 2019)")
|
147 |
parser.add_argument("input_file",
|
|
|
82 |
self.on_off_code = np.array(on_off_dim7_codes)
|
83 |
|
84 |
|
85 |
+
|
86 |
+
|
87 |
+
def encode_on_off_seq_pairs(input_file):
|
88 |
+
inputs = pd.read_csv(input_file, delimiter=",", header=None, names=['on_seq', 'off_seq'])
|
89 |
+
input_codes = []
|
90 |
+
for idx, row in inputs.iterrows():
|
91 |
+
on_seq = row['on_seq']
|
92 |
+
off_seq = row['off_seq']
|
93 |
+
en = Encoder(on_seq=on_seq, off_seq=off_seq)
|
94 |
+
input_codes.append(en.on_off_code)
|
95 |
+
input_codes = np.array(input_codes)
|
96 |
+
input_codes = input_codes.reshape((len(input_codes), 1, 24, 7))
|
97 |
+
y_pred = CRISPR_net_predict(input_codes)
|
98 |
+
inputs['CRISPR_Net_score'] = y_pred
|
99 |
+
inputs.to_csv("CRISPR_net_results.csv", index=False)
|
100 |
+
|
101 |
+
def CRISPR_net_predict(X_test):
|
102 |
+
json_file = open("cas9_model/CRISPR_Net_CIRCLE_elevation_SITE_structure.json", 'r')
|
103 |
+
loaded_model_json = json_file.read()
|
104 |
+
json_file.close()
|
105 |
+
loaded_model = tf.keras.models.model_from_json(loaded_model_json) # Updated for TensorFlow 2
|
106 |
+
loaded_model.load_weights("cas9_model/CRISPR_Net_CIRCLE_elevation_SITE_weights.h5")
|
107 |
+
y_pred = loaded_model.predict(X_test).flatten()
|
108 |
+
return y_pred
|
109 |
+
|
110 |
def process_input_and_predict(input_data, input_type='manual'):
|
111 |
"""
|
112 |
+
Process the user input and predict.
|
113 |
|
114 |
Args:
|
115 |
input_data: A string of manual input or the path to an input file.
|
|
|
144 |
|
145 |
return inputs
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
if __name__ == '__main__':
|
148 |
parser = argparse.ArgumentParser(description="CRISPR-Net v1.0 (Aug 10 2019)")
|
149 |
parser.add_argument("input_file",
|