File size: 7,083 Bytes
e352103
e4c787e
e352103
 
 
 
 
e4c787e
0a651e1
e352103
 
0a1a1a0
ad382c8
e352103
0a651e1
ad382c8
e352103
e4c787e
e352103
e4c787e
e352103
e4c787e
e352103
 
 
 
 
 
e4c787e
 
e352103
 
0029ec4
 
 
e4c787e
0029ec4
 
 
 
e4c787e
 
 
 
 
0029ec4
 
 
e4c787e
0029ec4
 
 
 
 
e352103
 
 
 
 
 
0029ec4
e352103
0029ec4
 
 
 
 
e4c787e
e352103
e4c787e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad382c8
e4c787e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2"
        ).to("cuda")

@spaces.GPU
def model_inference(
    images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
    repetition_penalty, top_p
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]


    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"}] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]

    if assistant_prefix:
      text = f"{assistant_prefix} {text}"


    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,

    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p

    generation_args.update(inputs)

    # Generate
    generated_ids = model.generate(**generation_args)

    generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    return generated_texts[0]


with gr.Blocks(fill_height=False) as demo:
    gr.Markdown("## SmolVLM: Small yet Mighty 💫")
    gr.Markdown("Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples.")
    with gr.Column():
        with gr.Row():
            image_input = gr.Image(label="Upload your Image", type="pil")

            with gr.Column():
                query_input = gr.Textbox(label="Prompt")
                assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")

                submit_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output")

        
        with gr.Accordion(label="Advanced Generation Parameters", open=False):
            examples=[
                    ["example_images/rococo.jpg", "What art era is this?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
                    ["example_images/examples_wat_arun.jpg", "I'm planning a visit to this temple, give me travel tips.",  "", "Greedy", 0.4, 512, 1.2, 0.8],
                    ["example_images/examples_invoice.png", "What is the due date and the invoice date?",  "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
                    ["example_images/s2w_example.png", "What is this UI about?",  "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
                    ["example_images/examples_weather_events.png", "Where do the severe droughts happen according to this diagram?",  "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
            ]
            # Hyper-parameters for generation
            max_new_tokens = gr.Slider(
                minimum=8,
                maximum=1024,
                value=512,
                step=1,
                interactive=True,
                label="Maximum number of new tokens to generate",
            )
            repetition_penalty = gr.Slider(
                minimum=0.01,
                maximum=5.0,
                value=1.2,
                step=0.01,
                interactive=True,
                label="Repetition penalty",
                info="1.0 is equivalent to no penalty",
            )
            temperature = gr.Slider(
                minimum=0.0,
                maximum=5.0,
                value=0.4,
                step=0.1,
                interactive=True,
                label="Sampling temperature",
                info="Higher values will produce more diverse outputs.",
            )
            top_p = gr.Slider(
                minimum=0.01,
                maximum=0.99,
                value=0.8,
                step=0.01,
                interactive=True,
                label="Top P",
                info="Higher values is equivalent to sampling more low-probability tokens.",
            )
            decoding_strategy = gr.Radio(
                [
                    "Top P Sampling",
                    "Greedy",
                    
                ],
                value="Top P Sampling",
                label="Decoding strategy",
                interactive=True,
                info="Higher values is equivalent to sampling more low-probability tokens.",
            )
            decoding_strategy.change(
                fn=lambda selection: gr.Slider(
                    visible=(
                        selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                    )
                ),
                inputs=decoding_strategy,
                outputs=temperature,
            )

            decoding_strategy.change(
                fn=lambda selection: gr.Slider(
                    visible=(
                        selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                    )
                ),
                inputs=decoding_strategy,
                outputs=repetition_penalty,
            )
            decoding_strategy.change(
                fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
                inputs=decoding_strategy,
                outputs=top_p,
            )
        gr.Examples(
                        examples = examples,
                        inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                              max_new_tokens, repetition_penalty, top_p],
                        outputs=output,
                        fn=model_inference
                    )   
        

        submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
                                                      max_new_tokens, repetition_penalty, top_p], outputs=output)


demo.launch(debug=True)