Revert chatbot
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq
|
3 |
-
from threading import Thread
|
4 |
import re
|
5 |
import time
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import spaces
|
9 |
-
|
10 |
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
|
12 |
|
@@ -16,39 +15,38 @@ model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct",
|
|
16 |
#_attn_implementation="flash_attention_2"
|
17 |
).to("cuda")
|
18 |
|
19 |
-
|
20 |
def model_inference(
|
21 |
-
|
22 |
repetition_penalty, top_p
|
23 |
-
):
|
24 |
-
text = input_dict["text"]
|
25 |
-
print(input_dict["files"])
|
26 |
-
if len(input_dict["files"]) > 1:
|
27 |
-
images = [Image.open(image["path"]).convert("RGB") for image in input_dict["files"]]
|
28 |
-
elif len(input_dict["files"]) == 1:
|
29 |
-
images = [Image.open(input_dict["files"][0]["path"]).convert("RGB")]
|
30 |
-
|
31 |
-
|
32 |
if text == "" and not images:
|
33 |
gr.Error("Please input a query and optionally image(s).")
|
34 |
|
35 |
if text == "" and images:
|
36 |
gr.Error("Please input a text query along the image(s).")
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
|
41 |
resulting_messages = [
|
42 |
{
|
43 |
"role": "user",
|
44 |
-
"content": [{"type": "image"}
|
45 |
{"type": "text", "text": text}
|
46 |
]
|
47 |
}
|
48 |
]
|
|
|
|
|
|
|
|
|
|
|
49 |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
50 |
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
51 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
|
|
52 |
generation_args = {
|
53 |
"max_new_tokens": max_new_tokens,
|
54 |
"repetition_penalty": repetition_penalty,
|
@@ -67,88 +65,119 @@ def model_inference(
|
|
67 |
generation_args["top_p"] = top_p
|
68 |
|
69 |
generation_args.update(inputs)
|
|
|
70 |
# Generate
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
time.sleep(0.01)
|
92 |
-
yield buffer
|
93 |
-
|
94 |
-
|
95 |
-
examples=[
|
96 |
-
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
97 |
-
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
98 |
-
[{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
99 |
-
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
100 |
-
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
101 |
-
[{"text": "What are?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
102 |
-
]
|
103 |
-
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM: Small yet Mighty 💫",
|
104 |
-
description="Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.",
|
105 |
-
examples=examples,
|
106 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
|
107 |
-
additional_inputs=[gr.Radio(["Top P Sampling",
|
108 |
-
"Greedy"],
|
109 |
-
value="Greedy",
|
110 |
-
label="Decoding strategy",
|
111 |
-
#interactive=True,
|
112 |
-
info="Higher values is equivalent to sampling more low-probability tokens.",
|
113 |
-
|
114 |
-
), gr.Slider(
|
115 |
-
minimum=0.0,
|
116 |
-
maximum=5.0,
|
117 |
-
value=0.4,
|
118 |
-
step=0.1,
|
119 |
-
interactive=True,
|
120 |
-
label="Sampling temperature",
|
121 |
-
info="Higher values will produce more diverse outputs.",
|
122 |
-
),
|
123 |
-
gr.Slider(
|
124 |
-
minimum=8,
|
125 |
-
maximum=1024,
|
126 |
-
value=512,
|
127 |
-
step=1,
|
128 |
-
interactive=True,
|
129 |
-
label="Maximum number of new tokens to generate",
|
130 |
-
), gr.Slider(
|
131 |
-
minimum=0.01,
|
132 |
-
maximum=5.0,
|
133 |
-
value=1.2,
|
134 |
-
step=0.01,
|
135 |
-
interactive=True,
|
136 |
-
label="Repetition penalty",
|
137 |
-
info="1.0 is equivalent to no penalty",
|
138 |
-
),
|
139 |
-
gr.Slider(
|
140 |
-
minimum=0.01,
|
141 |
-
maximum=0.99,
|
142 |
-
value=0.8,
|
143 |
-
step=0.01,
|
144 |
-
interactive=True,
|
145 |
-
label="Top P",
|
146 |
-
info="Higher values is equivalent to sampling more low-probability tokens.",
|
147 |
-
)],cache_examples=False
|
148 |
-
)
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
demo.launch(debug=True)
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
|
|
3 |
import re
|
4 |
import time
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
import spaces
|
8 |
+
import subprocess
|
9 |
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
|
11 |
|
|
|
15 |
#_attn_implementation="flash_attention_2"
|
16 |
).to("cuda")
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
def model_inference(
|
20 |
+
images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
|
21 |
repetition_penalty, top_p
|
22 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if text == "" and not images:
|
24 |
gr.Error("Please input a query and optionally image(s).")
|
25 |
|
26 |
if text == "" and images:
|
27 |
gr.Error("Please input a text query along the image(s).")
|
28 |
|
29 |
+
if isinstance(images, Image.Image):
|
30 |
+
images = [images]
|
31 |
|
32 |
|
33 |
resulting_messages = [
|
34 |
{
|
35 |
"role": "user",
|
36 |
+
"content": [{"type": "image"}] + [
|
37 |
{"type": "text", "text": text}
|
38 |
]
|
39 |
}
|
40 |
]
|
41 |
+
|
42 |
+
if assistant_prefix:
|
43 |
+
text = f"{assistant_prefix} {text}"
|
44 |
+
|
45 |
+
|
46 |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
47 |
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
48 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
49 |
+
|
50 |
generation_args = {
|
51 |
"max_new_tokens": max_new_tokens,
|
52 |
"repetition_penalty": repetition_penalty,
|
|
|
65 |
generation_args["top_p"] = top_p
|
66 |
|
67 |
generation_args.update(inputs)
|
68 |
+
|
69 |
# Generate
|
70 |
+
generated_ids = model.generate(**generation_args)
|
71 |
+
|
72 |
+
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
|
73 |
+
return generated_texts[0]
|
74 |
+
|
75 |
+
|
76 |
+
with gr.Blocks(fill_height=False) as demo:
|
77 |
+
gr.Markdown("## SmolVLM: Small yet Mighty 💫")
|
78 |
+
gr.Markdown("Play with [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) in this demo. To get started, upload an image and text or try one of the examples.")
|
79 |
+
with gr.Column():
|
80 |
+
with gr.Row():
|
81 |
+
image_input = gr.Image(label="Upload your Image", type="pil")
|
82 |
+
|
83 |
+
with gr.Column():
|
84 |
+
query_input = gr.Textbox(label="Prompt")
|
85 |
+
assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")
|
86 |
+
|
87 |
+
submit_btn = gr.Button("Submit")
|
88 |
+
output = gr.Textbox(label="Output")
|
89 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
with gr.Accordion(label="Advanced Generation Parameters", open=False):
|
92 |
+
examples=[
|
93 |
+
["example_images/rococo.jpg", "What art era is this?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
|
94 |
+
["example_images/examples_wat_arun.jpg", "I'm planning a visit to this temple, give me travel tips.", "", "Greedy", 0.4, 512, 1.2, 0.8],
|
95 |
+
["example_images/examples_invoice.png", "What is the due date and the invoice date?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
|
96 |
+
["example_images/s2w_example.png", "What is this UI about?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
|
97 |
+
["example_images/examples_weather_events.png", "Where do the severe droughts happen according to this diagram?", "", "Top P Sampling", 0.4, 512, 1.2, 0.8],
|
98 |
+
]
|
99 |
+
# Hyper-parameters for generation
|
100 |
+
max_new_tokens = gr.Slider(
|
101 |
+
minimum=8,
|
102 |
+
maximum=1024,
|
103 |
+
value=512,
|
104 |
+
step=1,
|
105 |
+
interactive=True,
|
106 |
+
label="Maximum number of new tokens to generate",
|
107 |
+
)
|
108 |
+
repetition_penalty = gr.Slider(
|
109 |
+
minimum=0.01,
|
110 |
+
maximum=5.0,
|
111 |
+
value=1.2,
|
112 |
+
step=0.01,
|
113 |
+
interactive=True,
|
114 |
+
label="Repetition penalty",
|
115 |
+
info="1.0 is equivalent to no penalty",
|
116 |
+
)
|
117 |
+
temperature = gr.Slider(
|
118 |
+
minimum=0.0,
|
119 |
+
maximum=5.0,
|
120 |
+
value=0.4,
|
121 |
+
step=0.1,
|
122 |
+
interactive=True,
|
123 |
+
label="Sampling temperature",
|
124 |
+
info="Higher values will produce more diverse outputs.",
|
125 |
+
)
|
126 |
+
top_p = gr.Slider(
|
127 |
+
minimum=0.01,
|
128 |
+
maximum=0.99,
|
129 |
+
value=0.8,
|
130 |
+
step=0.01,
|
131 |
+
interactive=True,
|
132 |
+
label="Top P",
|
133 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
134 |
+
)
|
135 |
+
decoding_strategy = gr.Radio(
|
136 |
+
[
|
137 |
+
"Top P Sampling",
|
138 |
+
"Greedy",
|
139 |
+
|
140 |
+
],
|
141 |
+
value="Top P Sampling",
|
142 |
+
label="Decoding strategy",
|
143 |
+
interactive=True,
|
144 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
145 |
+
)
|
146 |
+
decoding_strategy.change(
|
147 |
+
fn=lambda selection: gr.Slider(
|
148 |
+
visible=(
|
149 |
+
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
|
150 |
+
)
|
151 |
+
),
|
152 |
+
inputs=decoding_strategy,
|
153 |
+
outputs=temperature,
|
154 |
+
)
|
155 |
+
|
156 |
+
decoding_strategy.change(
|
157 |
+
fn=lambda selection: gr.Slider(
|
158 |
+
visible=(
|
159 |
+
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
|
160 |
+
)
|
161 |
+
),
|
162 |
+
inputs=decoding_strategy,
|
163 |
+
outputs=repetition_penalty,
|
164 |
+
)
|
165 |
+
decoding_strategy.change(
|
166 |
+
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
|
167 |
+
inputs=decoding_strategy,
|
168 |
+
outputs=top_p,
|
169 |
+
)
|
170 |
+
gr.Examples(
|
171 |
+
examples = examples,
|
172 |
+
inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
|
173 |
+
max_new_tokens, repetition_penalty, top_p],
|
174 |
+
outputs=output,
|
175 |
+
fn=model_inference
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
|
180 |
+
max_new_tokens, repetition_penalty, top_p], outputs=output)
|
181 |
+
|
182 |
+
|
183 |
+
demo.launch(debug=True)
|