File size: 24,319 Bytes
bfed184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
# ytedance Inc..  
# *************************************************************************
import os
import argparse
import numpy as np
# torch
import torch
from ema_pytorch import EMA
from einops import rearrange
import cv2
# utils
from utils.utils import set_seed, count_param, print_peak_memory
# model
import imageio
from model_lib.ControlNet.cldm.model import create_model
import copy
import glob
import imageio
from skimage.transform import resize
from skimage import img_as_ubyte
import face_alignment
import sys
from decord import VideoReader
from decord import cpu, gpu

TORCH_VERSION = torch.__version__.split(".")[0]
FP16_DTYPE = torch.float16
print(f"TORCH_VERSION={TORCH_VERSION} FP16_DTYPE={FP16_DTYPE}")

def extract_local_feature_from_single_img(img, fa, remove_local=False, real_tocrop=None, target_res = 512):
    device = img.device
    pred = img.permute([1, 2, 0]).detach().cpu().numpy()

    pred_lmks = img_as_ubyte(resize(pred, (256, 256)))

    try:
        lmks = fa.get_landmarks_from_image(pred_lmks, return_landmark_score=False)[0]
    except:
        print ('undetected faces!!')
        if real_tocrop is None:
            return torch.zeros_like(img) * 2 - 1., [196,196,320,320]
        return torch.zeros_like(img), [196,196,320,320]
    
    halfedge = 32
    left_eye_center = (np.clip(np.round(np.mean(lmks[43:48], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
    right_eye_center = (np.clip(np.round(np.mean(lmks[37:42], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
    mouth_center = (np.clip(np.round(np.mean(lmks[49:68], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)

    if real_tocrop is not None:
        pred = real_tocrop.permute([1, 2, 0]).detach().cpu().numpy()

    half_size = target_res // 8 #64
    if remove_local:
        local_viz = pred
        local_viz[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size] = 0
        local_viz[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size] = 0
        local_viz[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0]  + half_size] = 0        
    else:
        local_viz = np.zeros_like(pred)
        local_viz[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size] = pred[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size]
        local_viz[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size] = pred[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size]
        local_viz[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0]  + half_size] = pred[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size]

    local_viz = torch.from_numpy(local_viz).to(device)
    local_viz = local_viz.permute([2, 0, 1])
    if real_tocrop is None:
        local_viz = local_viz * 2 - 1.
    return local_viz

def find_best_frame_byheadpose_fa(source_image, driving_video, fa):
    input = img_as_ubyte(resize(source_image, (256, 256)))
    try:
        src_pose_array = fa.get_landmarks_from_image(input, return_landmark_score=False)[0]
    except:
        print ('undetected faces in the source image!!')
        src_pose_array = np.zeros((68,2))
    if len(src_pose_array) == 0:
        return 0
    min_diff = 1e8
    best_frame = 0

    for i in range(len(driving_video)):
        frame = img_as_ubyte(resize(driving_video[i], (256, 256)))
        try:
            drv_pose_array = fa.get_landmarks_from_image(frame, return_landmark_score=False)[0]
        except:
            print ('undetected faces in the %d-th driving image!!'%i)
            drv_pose_array = np.zeros((68,2))
        diff = np.sum(np.abs(np.array(src_pose_array)-np.array(drv_pose_array)))
        if diff < min_diff:
            best_frame = i
            min_diff = diff   
    
    return best_frame

def adjust_driving_video_to_src_image(source_image, driving_video, fa, nm_res, nmd_res, best_frame=-1):
    if best_frame == -2:
        return [resize(frame, (nm_res, nm_res)) for frame in driving_video], [resize(frame, (nmd_res, nmd_res)) for frame in driving_video]
    src = img_as_ubyte(resize(source_image[..., :3], (256, 256)))
    if  best_frame >= len(source_image):
        raise ValueError(
            f"please specify one frame in driving video of which the pose match best with the pose of source image"
        )

    if best_frame < 0:
        best_frame = find_best_frame_byheadpose_fa(src, driving_video, fa)

    print ('Best Frame: %d' % best_frame)
    driving = img_as_ubyte(resize(driving_video[best_frame], (256, 256)))

    src_lmks = fa.get_landmarks_from_image(src, return_landmark_score=False)
    drv_lmks = fa.get_landmarks_from_image(driving, return_landmark_score=False)

    if (src_lmks is None) or (drv_lmks is None):
        return [resize(frame, (nm_res, nm_res)) for frame in driving_video], [resize(frame, (nmd_res, nmd_res)) for frame in driving_video]
    src_lmks = src_lmks[0]
    drv_lmks = drv_lmks[0]
    src_centers = np.mean(src_lmks, axis=0)
    drv_centers = np.mean(drv_lmks, axis=0)
    edge_src = (np.max(src_lmks, axis=0) - np.min(src_lmks, axis=0))*0.5
    edge_drv = (np.max(drv_lmks, axis=0) - np.min(drv_lmks, axis=0))*0.5

    #matching three points 
    src_point=np.array([[src_centers[0]-edge_src[0],src_centers[1]-edge_src[1]],[src_centers[0]+edge_src[0],src_centers[1]-edge_src[1]],[src_centers[0]-edge_src[0],src_centers[1]+edge_src[1]],[src_centers[0]+edge_src[0],src_centers[1]+edge_src[1]]]).astype(np.float32)
    dst_point=np.array([[drv_centers[0]-edge_drv[0],drv_centers[1]-edge_drv[1]],[drv_centers[0]+edge_drv[0],drv_centers[1]-edge_drv[1]],[drv_centers[0]-edge_drv[0],drv_centers[1]+edge_drv[1]],[drv_centers[0]+edge_drv[0],drv_centers[1]+edge_drv[1]]]).astype(np.float32)
   
    adjusted_driving_video = []
    adjusted_driving_video_hd = []
    
    for frame in driving_video:
        frame_ld = resize(frame, (nm_res, nm_res))
        frame_hd = resize(frame, (nmd_res, nmd_res))
        zoomed=cv2.warpAffine(frame_ld, cv2.getAffineTransform(dst_point[:3], src_point[:3]), (nm_res, nm_res))
        zoomed_hd=cv2.warpAffine(frame_hd, cv2.getAffineTransform(dst_point[:3] * 2, src_point[:3] * 2), (nmd_res, nmd_res))
        adjusted_driving_video.append(zoomed)
        adjusted_driving_video_hd.append(zoomed_hd)
    
    return adjusted_driving_video, adjusted_driving_video_hd

def x_portrait_data_prep(source_image_path, driving_video_path, device, best_frame_id=0, start_idx = 0, num_frames=0, skip=1, output_local=False, more_source_image_pattern="", target_resolution = 512):
    source_image = imageio.imread(source_image_path)
    if '.mp4' in driving_video_path:
        reader = imageio.get_reader(driving_video_path)
        fps = reader.get_meta_data()['fps']
        driving_video = []
        try:
            for im in reader:
                driving_video.append(im)
        except RuntimeError:
            pass
        reader.close()
    else:
        driving_video = [imageio.imread(driving_video_path)[...,:3]]
        fps = 1

    nmd_res = target_resolution
    nm_res = 256
    source_image_hd = resize(source_image, (nmd_res, nmd_res))[..., :3]

    if more_source_image_pattern:
        more_source_paths = glob.glob(more_source_image_pattern)
        more_sources_hd = []
        for more_source_path in more_source_paths:
            more_source_image = imageio.imread(more_source_path)
            more_source_image_hd = resize(more_source_image, (nmd_res, nmd_res))[..., :3]
            more_source_hd = torch.tensor(more_source_image_hd[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
            more_source_hd = more_source_hd.to(device)
            more_sources_hd.append(more_source_hd)
        more_sources_hd = torch.stack(more_sources_hd, dim = 1) 
    else:
        more_sources_hd = None

    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True, device='cuda')

    driving_video, driving_video_hd = adjust_driving_video_to_src_image(source_image, driving_video, fa, nm_res, nmd_res, best_frame_id)

    if num_frames == 0:
        end_idx = len(driving_video)
    else:
        num_frames = min(len(driving_video), num_frames)
        end_idx = start_idx + num_frames * skip
    
    driving_video = driving_video[start_idx:end_idx][::skip]
    driving_video_hd = driving_video_hd[start_idx:end_idx][::skip]
    num_frames = len(driving_video)

    with torch.no_grad():
        real_source_hd = torch.tensor(source_image_hd[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
        real_source_hd = real_source_hd.to(device)

        driving_hd = torch.tensor(np.array(driving_video_hd).astype(np.float32)).permute(0, 3, 1, 2).to(device)

        local_features = []
        raw_drivings=[]

        for frame_idx in range(0, num_frames):
            raw_drivings.append(driving_hd[frame_idx:frame_idx+1] * 2 - 1.)
            if output_local:
                local_feature_img = extract_local_feature_from_single_img(driving_hd[frame_idx], fa,target_res=nmd_res)
                local_features.append(local_feature_img)


    batch_data = {}
    batch_data['fps'] = fps
    real_source_hd = real_source_hd * 2 - 1
    batch_data['sources'] = real_source_hd[:, None, :, :, :].repeat([num_frames, 1, 1, 1, 1]) 
    if more_sources_hd is not None:
        more_sources_hd = more_sources_hd * 2 - 1
        batch_data['more_sources'] = more_sources_hd.repeat([num_frames, 1, 1, 1, 1])

    raw_drivings = torch.stack(raw_drivings, dim = 0)
    batch_data['conditions'] = raw_drivings
    if output_local:
        batch_data['local'] = torch.stack(local_features, dim = 0)

    return batch_data

# You can now use the modified state_dict without the deleted keys
def load_state_dict(model, ckpt_path, reinit_hint_block=False, strict=True, map_location="cpu"):
    print(f"Loading model state dict from {ckpt_path} ...")
    state_dict = torch.load(ckpt_path, map_location=map_location)
    state_dict = state_dict.get('state_dict', state_dict)
    if reinit_hint_block:
        print("Ignoring hint block parameters from checkpoint!")
        for k in list(state_dict.keys()):
            if k.startswith("control_model.input_hint_block"):
                state_dict.pop(k)
    model.load_state_dict(state_dict, strict=strict)
    del state_dict   

def get_cond_control(args, batch_data, control_type, device, start, end, model=None, batch_size=None, train=True, key=0):

    control_type = copy.deepcopy(control_type)
    vae_bs = 16
    if control_type == "appearance_pose_local_mm":
        src = batch_data['sources'][start:end, key].cuda()
        c_cat_list = batch_data['conditions'][start:end].cuda()
        cond_image = []
        for k in range(0, end-start, vae_bs):
            cond_image.append(model.get_first_stage_encoding(model.encode_first_stage(src[k:k+vae_bs])))
        cond_image = torch.concat(cond_image, dim=0)
        cond_img_cat = cond_image
        p_local = batch_data['local'][start:end].cuda()    
        print ('Total frames:{}'.format(cond_img_cat.shape))
        more_cond_imgs = []
        if 'more_sources' in batch_data:
            num_additional_cond_imgs = batch_data['more_sources'].shape[1]
            for i in range(num_additional_cond_imgs):
                m_cond_img = batch_data['more_sources'][start:end, i]
                m_cond_img = model.get_first_stage_encoding(model.encode_first_stage(m_cond_img))
                more_cond_imgs.append([m_cond_img.to(device)])

        return [cond_img_cat.to(device), c_cat_list, p_local, more_cond_imgs]    
    else:
        raise NotImplementedError(f"cond_type={control_type} not supported!")

def visualize_mm(args, name, batch_data, infer_model, nSample, local_image_dir, num_mix=4, preset_output_name=''):
    driving_video_name = os.path.basename(batch_data['video_name']).split('.')[0]
    source_name = os.path.basename(batch_data['source_name']).split('.')[0]

    if not os.path.exists(local_image_dir):
        os.mkdir(local_image_dir)

    uc_scale = args.uc_scale
    if preset_output_name:
        preset_output_name = preset_output_name.split('.')[0]+'.mp4'
        output_path = f"{local_image_dir}/{preset_output_name}"
    else:
        output_path = f"{local_image_dir}/{name}_{args.control_type}_uc{uc_scale}_{source_name}_by_{driving_video_name}_mix{num_mix}.mp4"

    infer_model.eval()

    gene_img_list = []
    
    _, _, ch, h, w = batch_data['sources'].shape

    vae_bs = 16

    if args.initial_facevid2vid_results:
        facevid2vid = []
        facevid2vid_results = VideoReader(args.initial_facevid2vid_results, ctx=cpu(0))
        for frame_id in range(len(facevid2vid_results)):
            frame = cv2.resize(facevid2vid_results[frame_id].asnumpy(),(512,512)) / 255
            facevid2vid.append(torch.from_numpy(frame * 2 - 1).permute(2,0,1))
        cond = torch.stack(facevid2vid)[:nSample].float().to(args.device)
        pre_noise=[]
        for i in range(0, nSample, vae_bs):
            pre_noise.append(infer_model.get_first_stage_encoding(infer_model.encode_first_stage(cond[i:i+vae_bs])))
        pre_noise = torch.cat(pre_noise, dim=0)
        pre_noise = infer_model.q_sample(x_start = pre_noise, t = torch.tensor([999]).to(pre_noise.device))
    else:
        cond = batch_data['sources'][:nSample].reshape([-1, ch, h, w])
        pre_noise=[]
        for i in range(0, nSample, vae_bs):
            pre_noise.append(infer_model.get_first_stage_encoding(infer_model.encode_first_stage(cond[i:i+vae_bs])))
        pre_noise = torch.cat(pre_noise, dim=0)
        pre_noise = infer_model.q_sample(x_start = pre_noise, t = torch.tensor([999]).to(pre_noise.device))

    text = ["" for _ in range(nSample)]
    
    all_c_cat = get_cond_control(args, batch_data, args.control_type, args.device, start=0, end=nSample, model=infer_model, train=False)
    cond_img_cat = [all_c_cat[0]]
    pose_cond_list = [rearrange(all_c_cat[1], "b f c h w -> (b f) c h w")]
    local_pose_cond_list = [all_c_cat[2]]

    c_cross = infer_model.get_learned_conditioning(text)[:nSample]
    uc_cross = infer_model.get_unconditional_conditioning(nSample)

    c = {"c_crossattn": [c_cross], "image_control": cond_img_cat}
    if "appearance_pose" in args.control_type:
        c['c_concat'] = pose_cond_list
    if "appearance_pose_local" in args.control_type:
        c["local_c_concat"] = local_pose_cond_list
    
    if len(all_c_cat) > 3 and len(all_c_cat[3]) > 0:
        c['more_image_control'] = all_c_cat[3]

    if args.control_mode == "controlnet_important":
        uc = {"c_crossattn": [uc_cross]}
    else:
        uc = {"c_crossattn": [uc_cross], "image_control":cond_img_cat}

    if "appearance_pose" in args.control_type:
        uc['c_concat'] = [torch.zeros_like(pose_cond_list[0])]

    if "appearance_pose_local" in args.control_type:
        uc["local_c_concat"] = [torch.zeros_like(local_pose_cond_list[0])]

    if len(all_c_cat) > 3 and len(all_c_cat[3]) > 0:
        uc['more_image_control'] = all_c_cat[3]

    if args.wonoise:
        c['wonoise'] = True
        uc['wonoise'] = True
    else:
        c['wonoise'] = False
        uc['wonoise'] = False
        
    noise = pre_noise.to(c_cross.device)

    with torch.cuda.amp.autocast(enabled=args.use_fp16, dtype=FP16_DTYPE):
        infer_model.to(args.device)
        infer_model.eval()

        gene_img, _ = infer_model.sample_log(cond=c,
                                    batch_size=args.num_drivings, ddim=True,
                                    ddim_steps=args.ddim_steps, eta=args.eta,
                                    unconditional_guidance_scale=uc_scale,
                                    unconditional_conditioning=uc,
                                    inpaint=None,
                                    x_T=noise,
                                    num_overlap=num_mix,
                                    )

        for i in range(0, nSample, vae_bs):
            gene_img_part = infer_model.decode_first_stage( gene_img[i:i+vae_bs] )
            gene_img_list.append(gene_img_part.float().clamp(-1, 1).cpu())

    _, c, h, w = gene_img_list[0].shape  

    cond_image = batch_data["conditions"].reshape([-1,c,h,w])[:nSample].cpu()
    l_cond_image = batch_data["local"].reshape([-1,c,h,w])[:nSample].cpu()
    orig_image = batch_data["sources"][:nSample, 0].cpu()

    output_img = torch.cat(gene_img_list + [cond_image.cpu()]+[l_cond_image.cpu()]+[orig_image.cpu()]).float().clamp(-1,1).add(1).mul(0.5)

    num_cols = 4
    output_img = output_img.reshape([num_cols, 1, nSample, c, h, w]).permute([1, 0, 2, 3, 4,5])

    output_img = output_img.permute([2, 3, 0, 4, 1, 5]).reshape([-1, c,  h,  num_cols * w])
    output_img = torch.permute(output_img, [0, 2, 3, 1])
    
    output_img = output_img.data.cpu().numpy()
    output_img = img_as_ubyte(output_img)
    imageio.mimsave(output_path, output_img[:,:,:512], fps=batch_data['fps'], quality=10, pixelformat='yuv420p', codec='libx264')

def main(args):
    
    # ******************************
    # initialize training
    # ******************************
    args.world_size = 1
    args.local_rank = 0
    args.rank = 0
    args.device = torch.device("cuda", args.local_rank)

    # set seed for reproducibility
    set_seed(args.seed)

    # ******************************
    # create model
    # ******************************
    model = create_model(args.model_config).cpu()
    model.sd_locked = args.sd_locked
    model.only_mid_control = args.only_mid_control
    model.to(args.local_rank)
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    if args.local_rank == 0:
        print('Total base  parameters {:.02f}M'.format(count_param([model])))
    if args.ema_rate is not None and args.ema_rate > 0 and args.rank == 0:
        print(f"Creating EMA model at ema_rate={args.ema_rate}")
        model_ema = EMA(model, beta=args.ema_rate, update_after_step=0, update_every=1)
    else:
        model_ema = None

    # ******************************
    # load pre-trained models
    # ******************************
    if args.resume_dir is not None:
        if args.local_rank == 0:
            load_state_dict(model, args.resume_dir, strict=False)
    else:
        print('please privide the correct resume_dir!')
        exit()
    
    # ******************************
    # create DDP model
    # ******************************
    if args.compile and TORCH_VERSION == "2":
        model = torch.compile(model)
    
    torch.cuda.set_device(args.local_rank)
    print_peak_memory("Max memory allocated after creating DDP", args.local_rank)
    infer_model = model.module if hasattr(model, "module") else model

    with torch.no_grad():
        driving_videos = glob.glob(args.driving_video)
        for driving_video in driving_videos:
            print ('working on {}'.format(os.path.basename(driving_video)))
            infer_batch_data = x_portrait_data_prep(args.source_image, driving_video, args.device, args.best_frame, start_idx = args.start_idx, num_frames = args.out_frames, skip=args.skip, output_local=True)
            infer_batch_data['video_name'] = os.path.basename(driving_video)
            infer_batch_data['source_name'] = args.source_image
            nSample = infer_batch_data['sources'].shape[0]
            visualize_mm(args, "inference", infer_batch_data, infer_model, nSample=nSample, local_image_dir=args.output_dir, num_mix=args.num_mix)


if __name__ == "__main__":

    str2bool = lambda arg: bool(int(arg))
    parser = argparse.ArgumentParser(description='Control Net training')
    ## Model
    parser.add_argument('--model_config', type=str, default="model_lib/ControlNet/models/cldm_v15_video_appearance.yaml",
                        help="The path of model config file")
    parser.add_argument('--reinit_hint_block', action='store_true', default=False,
                        help="Re-initialize hint blocks for channel mis-match")
    parser.add_argument('--sd_locked', type =str2bool, default=True,
                        help='Freeze parameters in original stable-diffusion decoder')
    parser.add_argument('--only_mid_control', type =str2bool, default=False,
                        help='Only control middle blocks')
    parser.add_argument('--control_type', type=str, default="appearance_pose_local_mm",
                        help='The type of conditioning')
    parser.add_argument("--control_mode", type=str, default="controlnet_important",
                        help="Set controlnet is more important or balance.")
    parser.add_argument('--wonoise', action='store_false', default=True,
                        help='Use with referenceonly, remove adding noise on reference image')
 
    ## Training
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("--world_size", type=int, default=1)
    parser.add_argument('--seed', type=int, default=42, 
                        help='random seed for initialization')
    parser.add_argument('--use_fp16', action='store_false', default=True,
                        help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit')
    parser.add_argument('--compile', type=str2bool, default=False,
                        help='compile model (for torch 2)')
    parser.add_argument('--eta', type = float, default = 0.0,
                        help='eta during DDIM Sampling')
    parser.add_argument('--ema_rate', type = float, default = 0,
                        help='rate for ema')
    ## inference
    parser.add_argument("--initial_facevid2vid_results", type=str, default=None,
                    help="facevid2vid results for noise initialization")
    parser.add_argument('--ddim_steps', type = int, default = 1,
                        help='denoising steps')
    parser.add_argument('--uc_scale', type = int, default = 5,
                        help='cfg')
    parser.add_argument("--num_drivings", type = int, default = 16,
                        help="Number of driving images in a single sequence of video.")
    parser.add_argument("--output_dir", type=str, default=None, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--resume_dir", type=str, default=None,
                        help="The resume directory where the model checkpoints will be loaded.")
    parser.add_argument("--source_image", type=str, default="",
                        help="The source image for neural motion.")                  
    parser.add_argument("--more_source_image_pattern", type=str, default="",
                        help="The source image for neural motion.")   
    parser.add_argument("--driving_video", type=str, default="",
                        help="The source image mask for neural motion.")                 
    parser.add_argument('--best_frame', type=int, default=0,
                        help='best matching frame index')     
    parser.add_argument('--start_idx', type=int, default=0,
                        help='starting frame index')   
    parser.add_argument('--skip', type=int, default=1,
                        help='skip frame')  
    parser.add_argument('--num_mix', type=int, default=4,
                        help='num overlapping frames')  
    parser.add_argument('--out_frames', type=int, default=0,
                        help='num frames')  
    args = parser.parse_args()

    main(args)