Spaces:
Paused
Paused
File size: 24,319 Bytes
bfed184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
# ytedance Inc..
# *************************************************************************
import os
import argparse
import numpy as np
# torch
import torch
from ema_pytorch import EMA
from einops import rearrange
import cv2
# utils
from utils.utils import set_seed, count_param, print_peak_memory
# model
import imageio
from model_lib.ControlNet.cldm.model import create_model
import copy
import glob
import imageio
from skimage.transform import resize
from skimage import img_as_ubyte
import face_alignment
import sys
from decord import VideoReader
from decord import cpu, gpu
TORCH_VERSION = torch.__version__.split(".")[0]
FP16_DTYPE = torch.float16
print(f"TORCH_VERSION={TORCH_VERSION} FP16_DTYPE={FP16_DTYPE}")
def extract_local_feature_from_single_img(img, fa, remove_local=False, real_tocrop=None, target_res = 512):
device = img.device
pred = img.permute([1, 2, 0]).detach().cpu().numpy()
pred_lmks = img_as_ubyte(resize(pred, (256, 256)))
try:
lmks = fa.get_landmarks_from_image(pred_lmks, return_landmark_score=False)[0]
except:
print ('undetected faces!!')
if real_tocrop is None:
return torch.zeros_like(img) * 2 - 1., [196,196,320,320]
return torch.zeros_like(img), [196,196,320,320]
halfedge = 32
left_eye_center = (np.clip(np.round(np.mean(lmks[43:48], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
right_eye_center = (np.clip(np.round(np.mean(lmks[37:42], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
mouth_center = (np.clip(np.round(np.mean(lmks[49:68], axis=0)), halfedge, 255-halfedge) * (target_res / 256)).astype(np.int32)
if real_tocrop is not None:
pred = real_tocrop.permute([1, 2, 0]).detach().cpu().numpy()
half_size = target_res // 8 #64
if remove_local:
local_viz = pred
local_viz[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size] = 0
local_viz[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size] = 0
local_viz[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size] = 0
else:
local_viz = np.zeros_like(pred)
local_viz[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size] = pred[left_eye_center[1] - half_size : left_eye_center[1] + half_size, left_eye_center[0] - half_size : left_eye_center[0] + half_size]
local_viz[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size] = pred[right_eye_center[1] - half_size : right_eye_center[1] + half_size, right_eye_center[0] - half_size : right_eye_center[0] + half_size]
local_viz[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size] = pred[mouth_center[1] - half_size : mouth_center[1] + half_size, mouth_center[0] - half_size : mouth_center[0] + half_size]
local_viz = torch.from_numpy(local_viz).to(device)
local_viz = local_viz.permute([2, 0, 1])
if real_tocrop is None:
local_viz = local_viz * 2 - 1.
return local_viz
def find_best_frame_byheadpose_fa(source_image, driving_video, fa):
input = img_as_ubyte(resize(source_image, (256, 256)))
try:
src_pose_array = fa.get_landmarks_from_image(input, return_landmark_score=False)[0]
except:
print ('undetected faces in the source image!!')
src_pose_array = np.zeros((68,2))
if len(src_pose_array) == 0:
return 0
min_diff = 1e8
best_frame = 0
for i in range(len(driving_video)):
frame = img_as_ubyte(resize(driving_video[i], (256, 256)))
try:
drv_pose_array = fa.get_landmarks_from_image(frame, return_landmark_score=False)[0]
except:
print ('undetected faces in the %d-th driving image!!'%i)
drv_pose_array = np.zeros((68,2))
diff = np.sum(np.abs(np.array(src_pose_array)-np.array(drv_pose_array)))
if diff < min_diff:
best_frame = i
min_diff = diff
return best_frame
def adjust_driving_video_to_src_image(source_image, driving_video, fa, nm_res, nmd_res, best_frame=-1):
if best_frame == -2:
return [resize(frame, (nm_res, nm_res)) for frame in driving_video], [resize(frame, (nmd_res, nmd_res)) for frame in driving_video]
src = img_as_ubyte(resize(source_image[..., :3], (256, 256)))
if best_frame >= len(source_image):
raise ValueError(
f"please specify one frame in driving video of which the pose match best with the pose of source image"
)
if best_frame < 0:
best_frame = find_best_frame_byheadpose_fa(src, driving_video, fa)
print ('Best Frame: %d' % best_frame)
driving = img_as_ubyte(resize(driving_video[best_frame], (256, 256)))
src_lmks = fa.get_landmarks_from_image(src, return_landmark_score=False)
drv_lmks = fa.get_landmarks_from_image(driving, return_landmark_score=False)
if (src_lmks is None) or (drv_lmks is None):
return [resize(frame, (nm_res, nm_res)) for frame in driving_video], [resize(frame, (nmd_res, nmd_res)) for frame in driving_video]
src_lmks = src_lmks[0]
drv_lmks = drv_lmks[0]
src_centers = np.mean(src_lmks, axis=0)
drv_centers = np.mean(drv_lmks, axis=0)
edge_src = (np.max(src_lmks, axis=0) - np.min(src_lmks, axis=0))*0.5
edge_drv = (np.max(drv_lmks, axis=0) - np.min(drv_lmks, axis=0))*0.5
#matching three points
src_point=np.array([[src_centers[0]-edge_src[0],src_centers[1]-edge_src[1]],[src_centers[0]+edge_src[0],src_centers[1]-edge_src[1]],[src_centers[0]-edge_src[0],src_centers[1]+edge_src[1]],[src_centers[0]+edge_src[0],src_centers[1]+edge_src[1]]]).astype(np.float32)
dst_point=np.array([[drv_centers[0]-edge_drv[0],drv_centers[1]-edge_drv[1]],[drv_centers[0]+edge_drv[0],drv_centers[1]-edge_drv[1]],[drv_centers[0]-edge_drv[0],drv_centers[1]+edge_drv[1]],[drv_centers[0]+edge_drv[0],drv_centers[1]+edge_drv[1]]]).astype(np.float32)
adjusted_driving_video = []
adjusted_driving_video_hd = []
for frame in driving_video:
frame_ld = resize(frame, (nm_res, nm_res))
frame_hd = resize(frame, (nmd_res, nmd_res))
zoomed=cv2.warpAffine(frame_ld, cv2.getAffineTransform(dst_point[:3], src_point[:3]), (nm_res, nm_res))
zoomed_hd=cv2.warpAffine(frame_hd, cv2.getAffineTransform(dst_point[:3] * 2, src_point[:3] * 2), (nmd_res, nmd_res))
adjusted_driving_video.append(zoomed)
adjusted_driving_video_hd.append(zoomed_hd)
return adjusted_driving_video, adjusted_driving_video_hd
def x_portrait_data_prep(source_image_path, driving_video_path, device, best_frame_id=0, start_idx = 0, num_frames=0, skip=1, output_local=False, more_source_image_pattern="", target_resolution = 512):
source_image = imageio.imread(source_image_path)
if '.mp4' in driving_video_path:
reader = imageio.get_reader(driving_video_path)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
else:
driving_video = [imageio.imread(driving_video_path)[...,:3]]
fps = 1
nmd_res = target_resolution
nm_res = 256
source_image_hd = resize(source_image, (nmd_res, nmd_res))[..., :3]
if more_source_image_pattern:
more_source_paths = glob.glob(more_source_image_pattern)
more_sources_hd = []
for more_source_path in more_source_paths:
more_source_image = imageio.imread(more_source_path)
more_source_image_hd = resize(more_source_image, (nmd_res, nmd_res))[..., :3]
more_source_hd = torch.tensor(more_source_image_hd[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
more_source_hd = more_source_hd.to(device)
more_sources_hd.append(more_source_hd)
more_sources_hd = torch.stack(more_sources_hd, dim = 1)
else:
more_sources_hd = None
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True, device='cuda')
driving_video, driving_video_hd = adjust_driving_video_to_src_image(source_image, driving_video, fa, nm_res, nmd_res, best_frame_id)
if num_frames == 0:
end_idx = len(driving_video)
else:
num_frames = min(len(driving_video), num_frames)
end_idx = start_idx + num_frames * skip
driving_video = driving_video[start_idx:end_idx][::skip]
driving_video_hd = driving_video_hd[start_idx:end_idx][::skip]
num_frames = len(driving_video)
with torch.no_grad():
real_source_hd = torch.tensor(source_image_hd[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
real_source_hd = real_source_hd.to(device)
driving_hd = torch.tensor(np.array(driving_video_hd).astype(np.float32)).permute(0, 3, 1, 2).to(device)
local_features = []
raw_drivings=[]
for frame_idx in range(0, num_frames):
raw_drivings.append(driving_hd[frame_idx:frame_idx+1] * 2 - 1.)
if output_local:
local_feature_img = extract_local_feature_from_single_img(driving_hd[frame_idx], fa,target_res=nmd_res)
local_features.append(local_feature_img)
batch_data = {}
batch_data['fps'] = fps
real_source_hd = real_source_hd * 2 - 1
batch_data['sources'] = real_source_hd[:, None, :, :, :].repeat([num_frames, 1, 1, 1, 1])
if more_sources_hd is not None:
more_sources_hd = more_sources_hd * 2 - 1
batch_data['more_sources'] = more_sources_hd.repeat([num_frames, 1, 1, 1, 1])
raw_drivings = torch.stack(raw_drivings, dim = 0)
batch_data['conditions'] = raw_drivings
if output_local:
batch_data['local'] = torch.stack(local_features, dim = 0)
return batch_data
# You can now use the modified state_dict without the deleted keys
def load_state_dict(model, ckpt_path, reinit_hint_block=False, strict=True, map_location="cpu"):
print(f"Loading model state dict from {ckpt_path} ...")
state_dict = torch.load(ckpt_path, map_location=map_location)
state_dict = state_dict.get('state_dict', state_dict)
if reinit_hint_block:
print("Ignoring hint block parameters from checkpoint!")
for k in list(state_dict.keys()):
if k.startswith("control_model.input_hint_block"):
state_dict.pop(k)
model.load_state_dict(state_dict, strict=strict)
del state_dict
def get_cond_control(args, batch_data, control_type, device, start, end, model=None, batch_size=None, train=True, key=0):
control_type = copy.deepcopy(control_type)
vae_bs = 16
if control_type == "appearance_pose_local_mm":
src = batch_data['sources'][start:end, key].cuda()
c_cat_list = batch_data['conditions'][start:end].cuda()
cond_image = []
for k in range(0, end-start, vae_bs):
cond_image.append(model.get_first_stage_encoding(model.encode_first_stage(src[k:k+vae_bs])))
cond_image = torch.concat(cond_image, dim=0)
cond_img_cat = cond_image
p_local = batch_data['local'][start:end].cuda()
print ('Total frames:{}'.format(cond_img_cat.shape))
more_cond_imgs = []
if 'more_sources' in batch_data:
num_additional_cond_imgs = batch_data['more_sources'].shape[1]
for i in range(num_additional_cond_imgs):
m_cond_img = batch_data['more_sources'][start:end, i]
m_cond_img = model.get_first_stage_encoding(model.encode_first_stage(m_cond_img))
more_cond_imgs.append([m_cond_img.to(device)])
return [cond_img_cat.to(device), c_cat_list, p_local, more_cond_imgs]
else:
raise NotImplementedError(f"cond_type={control_type} not supported!")
def visualize_mm(args, name, batch_data, infer_model, nSample, local_image_dir, num_mix=4, preset_output_name=''):
driving_video_name = os.path.basename(batch_data['video_name']).split('.')[0]
source_name = os.path.basename(batch_data['source_name']).split('.')[0]
if not os.path.exists(local_image_dir):
os.mkdir(local_image_dir)
uc_scale = args.uc_scale
if preset_output_name:
preset_output_name = preset_output_name.split('.')[0]+'.mp4'
output_path = f"{local_image_dir}/{preset_output_name}"
else:
output_path = f"{local_image_dir}/{name}_{args.control_type}_uc{uc_scale}_{source_name}_by_{driving_video_name}_mix{num_mix}.mp4"
infer_model.eval()
gene_img_list = []
_, _, ch, h, w = batch_data['sources'].shape
vae_bs = 16
if args.initial_facevid2vid_results:
facevid2vid = []
facevid2vid_results = VideoReader(args.initial_facevid2vid_results, ctx=cpu(0))
for frame_id in range(len(facevid2vid_results)):
frame = cv2.resize(facevid2vid_results[frame_id].asnumpy(),(512,512)) / 255
facevid2vid.append(torch.from_numpy(frame * 2 - 1).permute(2,0,1))
cond = torch.stack(facevid2vid)[:nSample].float().to(args.device)
pre_noise=[]
for i in range(0, nSample, vae_bs):
pre_noise.append(infer_model.get_first_stage_encoding(infer_model.encode_first_stage(cond[i:i+vae_bs])))
pre_noise = torch.cat(pre_noise, dim=0)
pre_noise = infer_model.q_sample(x_start = pre_noise, t = torch.tensor([999]).to(pre_noise.device))
else:
cond = batch_data['sources'][:nSample].reshape([-1, ch, h, w])
pre_noise=[]
for i in range(0, nSample, vae_bs):
pre_noise.append(infer_model.get_first_stage_encoding(infer_model.encode_first_stage(cond[i:i+vae_bs])))
pre_noise = torch.cat(pre_noise, dim=0)
pre_noise = infer_model.q_sample(x_start = pre_noise, t = torch.tensor([999]).to(pre_noise.device))
text = ["" for _ in range(nSample)]
all_c_cat = get_cond_control(args, batch_data, args.control_type, args.device, start=0, end=nSample, model=infer_model, train=False)
cond_img_cat = [all_c_cat[0]]
pose_cond_list = [rearrange(all_c_cat[1], "b f c h w -> (b f) c h w")]
local_pose_cond_list = [all_c_cat[2]]
c_cross = infer_model.get_learned_conditioning(text)[:nSample]
uc_cross = infer_model.get_unconditional_conditioning(nSample)
c = {"c_crossattn": [c_cross], "image_control": cond_img_cat}
if "appearance_pose" in args.control_type:
c['c_concat'] = pose_cond_list
if "appearance_pose_local" in args.control_type:
c["local_c_concat"] = local_pose_cond_list
if len(all_c_cat) > 3 and len(all_c_cat[3]) > 0:
c['more_image_control'] = all_c_cat[3]
if args.control_mode == "controlnet_important":
uc = {"c_crossattn": [uc_cross]}
else:
uc = {"c_crossattn": [uc_cross], "image_control":cond_img_cat}
if "appearance_pose" in args.control_type:
uc['c_concat'] = [torch.zeros_like(pose_cond_list[0])]
if "appearance_pose_local" in args.control_type:
uc["local_c_concat"] = [torch.zeros_like(local_pose_cond_list[0])]
if len(all_c_cat) > 3 and len(all_c_cat[3]) > 0:
uc['more_image_control'] = all_c_cat[3]
if args.wonoise:
c['wonoise'] = True
uc['wonoise'] = True
else:
c['wonoise'] = False
uc['wonoise'] = False
noise = pre_noise.to(c_cross.device)
with torch.cuda.amp.autocast(enabled=args.use_fp16, dtype=FP16_DTYPE):
infer_model.to(args.device)
infer_model.eval()
gene_img, _ = infer_model.sample_log(cond=c,
batch_size=args.num_drivings, ddim=True,
ddim_steps=args.ddim_steps, eta=args.eta,
unconditional_guidance_scale=uc_scale,
unconditional_conditioning=uc,
inpaint=None,
x_T=noise,
num_overlap=num_mix,
)
for i in range(0, nSample, vae_bs):
gene_img_part = infer_model.decode_first_stage( gene_img[i:i+vae_bs] )
gene_img_list.append(gene_img_part.float().clamp(-1, 1).cpu())
_, c, h, w = gene_img_list[0].shape
cond_image = batch_data["conditions"].reshape([-1,c,h,w])[:nSample].cpu()
l_cond_image = batch_data["local"].reshape([-1,c,h,w])[:nSample].cpu()
orig_image = batch_data["sources"][:nSample, 0].cpu()
output_img = torch.cat(gene_img_list + [cond_image.cpu()]+[l_cond_image.cpu()]+[orig_image.cpu()]).float().clamp(-1,1).add(1).mul(0.5)
num_cols = 4
output_img = output_img.reshape([num_cols, 1, nSample, c, h, w]).permute([1, 0, 2, 3, 4,5])
output_img = output_img.permute([2, 3, 0, 4, 1, 5]).reshape([-1, c, h, num_cols * w])
output_img = torch.permute(output_img, [0, 2, 3, 1])
output_img = output_img.data.cpu().numpy()
output_img = img_as_ubyte(output_img)
imageio.mimsave(output_path, output_img[:,:,:512], fps=batch_data['fps'], quality=10, pixelformat='yuv420p', codec='libx264')
def main(args):
# ******************************
# initialize training
# ******************************
args.world_size = 1
args.local_rank = 0
args.rank = 0
args.device = torch.device("cuda", args.local_rank)
# set seed for reproducibility
set_seed(args.seed)
# ******************************
# create model
# ******************************
model = create_model(args.model_config).cpu()
model.sd_locked = args.sd_locked
model.only_mid_control = args.only_mid_control
model.to(args.local_rank)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.local_rank == 0:
print('Total base parameters {:.02f}M'.format(count_param([model])))
if args.ema_rate is not None and args.ema_rate > 0 and args.rank == 0:
print(f"Creating EMA model at ema_rate={args.ema_rate}")
model_ema = EMA(model, beta=args.ema_rate, update_after_step=0, update_every=1)
else:
model_ema = None
# ******************************
# load pre-trained models
# ******************************
if args.resume_dir is not None:
if args.local_rank == 0:
load_state_dict(model, args.resume_dir, strict=False)
else:
print('please privide the correct resume_dir!')
exit()
# ******************************
# create DDP model
# ******************************
if args.compile and TORCH_VERSION == "2":
model = torch.compile(model)
torch.cuda.set_device(args.local_rank)
print_peak_memory("Max memory allocated after creating DDP", args.local_rank)
infer_model = model.module if hasattr(model, "module") else model
with torch.no_grad():
driving_videos = glob.glob(args.driving_video)
for driving_video in driving_videos:
print ('working on {}'.format(os.path.basename(driving_video)))
infer_batch_data = x_portrait_data_prep(args.source_image, driving_video, args.device, args.best_frame, start_idx = args.start_idx, num_frames = args.out_frames, skip=args.skip, output_local=True)
infer_batch_data['video_name'] = os.path.basename(driving_video)
infer_batch_data['source_name'] = args.source_image
nSample = infer_batch_data['sources'].shape[0]
visualize_mm(args, "inference", infer_batch_data, infer_model, nSample=nSample, local_image_dir=args.output_dir, num_mix=args.num_mix)
if __name__ == "__main__":
str2bool = lambda arg: bool(int(arg))
parser = argparse.ArgumentParser(description='Control Net training')
## Model
parser.add_argument('--model_config', type=str, default="model_lib/ControlNet/models/cldm_v15_video_appearance.yaml",
help="The path of model config file")
parser.add_argument('--reinit_hint_block', action='store_true', default=False,
help="Re-initialize hint blocks for channel mis-match")
parser.add_argument('--sd_locked', type =str2bool, default=True,
help='Freeze parameters in original stable-diffusion decoder')
parser.add_argument('--only_mid_control', type =str2bool, default=False,
help='Only control middle blocks')
parser.add_argument('--control_type', type=str, default="appearance_pose_local_mm",
help='The type of conditioning')
parser.add_argument("--control_mode", type=str, default="controlnet_important",
help="Set controlnet is more important or balance.")
parser.add_argument('--wonoise', action='store_false', default=True,
help='Use with referenceonly, remove adding noise on reference image')
## Training
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--world_size", type=int, default=1)
parser.add_argument('--seed', type=int, default=42,
help='random seed for initialization')
parser.add_argument('--use_fp16', action='store_false', default=True,
help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit')
parser.add_argument('--compile', type=str2bool, default=False,
help='compile model (for torch 2)')
parser.add_argument('--eta', type = float, default = 0.0,
help='eta during DDIM Sampling')
parser.add_argument('--ema_rate', type = float, default = 0,
help='rate for ema')
## inference
parser.add_argument("--initial_facevid2vid_results", type=str, default=None,
help="facevid2vid results for noise initialization")
parser.add_argument('--ddim_steps', type = int, default = 1,
help='denoising steps')
parser.add_argument('--uc_scale', type = int, default = 5,
help='cfg')
parser.add_argument("--num_drivings", type = int, default = 16,
help="Number of driving images in a single sequence of video.")
parser.add_argument("--output_dir", type=str, default=None, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--resume_dir", type=str, default=None,
help="The resume directory where the model checkpoints will be loaded.")
parser.add_argument("--source_image", type=str, default="",
help="The source image for neural motion.")
parser.add_argument("--more_source_image_pattern", type=str, default="",
help="The source image for neural motion.")
parser.add_argument("--driving_video", type=str, default="",
help="The source image mask for neural motion.")
parser.add_argument('--best_frame', type=int, default=0,
help='best matching frame index')
parser.add_argument('--start_idx', type=int, default=0,
help='starting frame index')
parser.add_argument('--skip', type=int, default=1,
help='skip frame')
parser.add_argument('--num_mix', type=int, default=4,
help='num overlapping frames')
parser.add_argument('--out_frames', type=int, default=0,
help='num frames')
args = parser.parse_args()
main(args)
|