Spaces:
Paused
Paused
import importlib | |
import torch | |
from torch import optim | |
import numpy as np | |
from inspect import isfunction | |
from PIL import Image, ImageDraw, ImageFont | |
def log_txt_as_img(wh, xc, size=10): | |
# wh a tuple of (width, height) | |
# xc a list of captions to plot | |
b = len(xc) | |
txts = list() | |
for bi in range(b): | |
txt = Image.new("RGB", wh, color="white") | |
draw = ImageDraw.Draw(txt) | |
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) | |
nc = int(40 * (wh[0] / 256)) | |
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) | |
try: | |
draw.text((0, 0), lines, fill="black", font=font) | |
except UnicodeEncodeError: | |
print("Cant encode string for logging. Skipping.") | |
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 | |
txts.append(txt) | |
txts = np.stack(txts) | |
txts = torch.tensor(txts) | |
return txts | |
def ismap(x): | |
if not isinstance(x, torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] > 3) | |
def isimage(x): | |
if not isinstance(x,torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def mean_flat(tensor): | |
""" | |
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def count_params(model, verbose=False): | |
total_params = sum(p.numel() for p in model.parameters()) | |
if verbose: | |
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") | |
return total_params | |
def instantiate_from_config(config): | |
if not "target" in config: | |
if config == '__is_first_stage__': | |
return None | |
elif config == "__is_unconditional__": | |
return None | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
class AdamWwithEMAandWings(optim.Optimizer): | |
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 | |
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using | |
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code | |
ema_power=1., param_names=()): | |
"""AdamW that saves EMA versions of the parameters.""" | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
if not 0.0 <= weight_decay: | |
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | |
if not 0.0 <= ema_decay <= 1.0: | |
raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) | |
defaults = dict(lr=lr, betas=betas, eps=eps, | |
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, | |
ema_power=ema_power, param_names=param_names) | |
super().__init__(params, defaults) | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault('amsgrad', False) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
params_with_grad = [] | |
grads = [] | |
exp_avgs = [] | |
exp_avg_sqs = [] | |
ema_params_with_grad = [] | |
state_sums = [] | |
max_exp_avg_sqs = [] | |
state_steps = [] | |
amsgrad = group['amsgrad'] | |
beta1, beta2 = group['betas'] | |
ema_decay = group['ema_decay'] | |
ema_power = group['ema_power'] | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
params_with_grad.append(p) | |
if p.grad.is_sparse: | |
raise RuntimeError('AdamW does not support sparse gradients') | |
grads.append(p.grad) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
# Exponential moving average of parameter values | |
state['param_exp_avg'] = p.detach().float().clone() | |
exp_avgs.append(state['exp_avg']) | |
exp_avg_sqs.append(state['exp_avg_sq']) | |
ema_params_with_grad.append(state['param_exp_avg']) | |
if amsgrad: | |
max_exp_avg_sqs.append(state['max_exp_avg_sq']) | |
# update the steps for each param group update | |
state['step'] += 1 | |
# record the step after step update | |
state_steps.append(state['step']) | |
optim._functional.adamw(params_with_grad, | |
grads, | |
exp_avgs, | |
exp_avg_sqs, | |
max_exp_avg_sqs, | |
state_steps, | |
amsgrad=amsgrad, | |
beta1=beta1, | |
beta2=beta2, | |
lr=group['lr'], | |
weight_decay=group['weight_decay'], | |
eps=group['eps'], | |
maximize=False) | |
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) | |
for param, ema_param in zip(params_with_grad, ema_params_with_grad): | |
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) | |
return loss |