File size: 37,194 Bytes
d807efd 8963af6 d807efd 8963af6 d807efd 8963af6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
import torch
from utils import import_model_class_from_model_name_or_path
from transformers import AutoTokenizer
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet2DConditionModel,
)
from accelerate import Accelerator
from tqdm.auto import tqdm
from utils import sd_prepare_input_decom, save_images
import torch.nn.functional as F
import itertools
from peft import LoraConfig
from controller import GroupedCAController, register_attention_disentangled_control, DummyController
from utils import image2latent, latent2image
import matplotlib.pyplot as plt
from utils_mask import check_mask_overlap_torch
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
class DEditSDPipeline:
def __init__(
self,
mask_list,
mask_label_list,
mask_list_2 = None,
mask_label_list_2 = None,
resolution = 512,
num_tokens = 1
):
super().__init__()
model_id = "CompVis/stable-diffusion-v1-4"
self.model_id = model_id
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False)
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder")
self.text_encoder = text_encoder_cls_one.from_pretrained(model_id, subfolder="text_encoder" ).to(device)
self.unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
self.unet.ca_dim = 768
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
self.scheduler = DDPMScheduler.from_pretrained(model_id , subfolder="scheduler")
self.scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=True,
rescale_betas_zero_snr = False,
)
self.mixed_precision = "fp16"
self.resolution = resolution
self.num_tokens = num_tokens
self.mask_list = mask_list
self.mask_label_list = mask_label_list
notation_token_list = [phrase.split(" ")[-1] for phrase in mask_label_list]
placeholder_token_list = ["#"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list)]
self.set_string_list, placeholder_token_ids = self.add_tokens(placeholder_token_list)
self.min_added_id = min(placeholder_token_ids)
self.max_added_id = max(placeholder_token_ids)
if mask_list_2 is not None:
self.mask_list_2 = mask_list_2
self.mask_label_list_2 = mask_label_list_2
notation_token_list_2 = [phrase.split(" ")[-1] for phrase in mask_label_list_2]
placeholder_token_list_2 = ["$"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list_2)]
self.set_string_list_2, placeholder_token_ids_2 = self.add_tokens(placeholder_token_list_2)
self.max_added_id = max(placeholder_token_ids_2)
def add_tokens_text_encoder_random_init(self, placeholder_token, num_tokens=1):
# Add the placeholder token in tokenizer
placeholder_tokens = [placeholder_token]
# add dummy tokens for multi-vector
additional_tokens = []
for i in range(1, num_tokens):
additional_tokens.append(f"{placeholder_token}_{i}")
placeholder_tokens += additional_tokens
num_added_tokens = self.tokenizer.add_tokens(placeholder_tokens) # 49408
if num_added_tokens != num_tokens:
raise ValueError(
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(placeholder_tokens)
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
token_embeds = self.text_encoder.get_input_embeddings().weight.data
std, mean = torch.std_mean(token_embeds)
with torch.no_grad():
for token_id in placeholder_token_ids:
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean
set_string = " ".join(self.tokenizer.convert_ids_to_tokens(placeholder_token_ids))
return set_string, placeholder_token_ids
def add_tokens(self, placeholder_token_list):
set_string_list = []
placeholder_token_ids_list = []
for str_idx in range(len(placeholder_token_list)):
placeholder_token = placeholder_token_list[str_idx]
set_string, placeholder_token_ids = self.add_tokens_text_encoder_random_init(placeholder_token, num_tokens=self.num_tokens)
set_string_list.append(set_string)
placeholder_token_ids_list.append(placeholder_token_ids)
placeholder_token_ids = list(itertools.chain(*placeholder_token_ids_list))
return set_string_list, placeholder_token_ids
def train_emb(
self,
image_gt,
set_string_list,
gradient_accumulation_steps = 5,
embedding_learning_rate = 1e-4,
max_emb_train_steps = 100,
train_batch_size = 1,
):
decom_controller = GroupedCAController(mask_list = self.mask_list)
register_attention_disentangled_control(self.unet, decom_controller)
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(True)
self.text_encoder.text_model.encoder.requires_grad_(False)
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
self.unet.to(device, dtype=weight_dtype)
self.vae.to(device, dtype=weight_dtype)
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate)
self.text_encoder, optimizer = accelerator.prepare(self.text_encoder, optimizer)
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight.data.clone()
self.text_encoder.train()
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
if accelerator.is_main_process:
accelerator.init_trackers("DEdit EmbSteps", config={
"embedding_learning_rate": embedding_learning_rate,
"text_embedding_optimization_steps": effective_emb_train_steps,
})
global_step = 0
noise_scheduler = self.scheduler
progress_bar = tqdm(range(0, effective_emb_train_steps), initial = global_step, desc="EmbSteps")
latents0 = image2latent(image_gt, vae = self.vae, dtype = weight_dtype)
latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
for _ in range(max_emb_train_steps):
with accelerator.accumulate(self.text_encoder):
latents = latents0.clone().detach()
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
encoder_hidden_states_list = sd_prepare_input_decom(
set_string_list,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = train_batch_size,
weight_dtype = weight_dtype
)
model_pred = self.unet(
noisy_latents,
timesteps,
encoder_hidden_states = encoder_hidden_states_list,
).sample
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
with torch.no_grad():
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
index_no_updates] = orig_embeds_params_1[index_no_updates]
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step >= max_emb_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
self.text_encoder = accelerator.unwrap_model(self.text_encoder).to(dtype = weight_dtype)
def train_model(
self,
image_gt,
set_string_list,
gradient_accumulation_steps = 5,
max_diffusion_train_steps = 100,
diffusion_model_learning_rate = 1e-5,
train_batch_size = 1,
train_full_lora = False,
lora_rank = 4,
lora_alpha = 4
):
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
self.unet.ca_dim = 768
decom_controller = GroupedCAController(mask_list = self.mask_list)
register_attention_disentangled_control(self.unet, decom_controller)
mixed_precision = "fp16"
accelerator = Accelerator(gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
self.vae.requires_grad_(False)
self.vae.to(device, dtype=weight_dtype)
self.unet.requires_grad_(False)
self.unet.train()
self.text_encoder.requires_grad_(False)
if not train_full_lora:
trainable_params_list = []
for _, module in self.unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
if module.to_k.in_features == self.unet.ca_dim: # this is cross attention:
module.to_k.weight.requires_grad = True
trainable_params_list.append(module.to_k.weight)
if module.to_k.bias is not None:
module.to_k.bias.requires_grad = True
trainable_params_list.append(module.to_k.bias)
module.to_v.weight.requires_grad = True
trainable_params_list.append(module.to_v.weight)
if module.to_v.bias is not None:
module.to_v.bias.requires_grad = True
trainable_params_list.append(module.to_v.bias)
module.to_q.weight.requires_grad = True
trainable_params_list.append(module.to_q.weight)
if module.to_q.bias is not None:
module.to_q.bias.requires_grad = True
trainable_params_list.append(module.to_q.bias)
else:
unet_lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
self.unet.add_adapter(unet_lora_config)
print("training full parameters using lora!")
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
self.text_encoder.to(device, dtype=weight_dtype)
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)
self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
psum2 = sum(p.numel() for p in trainable_params_list)
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
if accelerator.is_main_process:
accelerator.init_trackers("textual_inversion", config={
"diffusion_model_learning_rate": diffusion_model_learning_rate,
"diffusion_model_optimization_steps": effective_diffusion_train_steps,
})
global_step = 0
progress_bar = tqdm( range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler")
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype)
latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
with torch.no_grad():
encoder_hidden_states_list = sd_prepare_input_decom(
set_string_list,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = train_batch_size,
weight_dtype = weight_dtype
)
for _ in range(max_diffusion_train_steps):
with accelerator.accumulate(self.unet):
latents = latents0.clone().detach()
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
model_pred = self.unet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states_list,
).sample
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step >=max_diffusion_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)
def train_emb_2imgs(
self,
image_gt_1,
image_gt_2,
set_string_list_1,
set_string_list_2,
gradient_accumulation_steps = 5,
embedding_learning_rate = 1e-4,
max_emb_train_steps = 100,
train_batch_size = 1,
):
decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
self.text_encoder.requires_grad_(True)
self.text_encoder.text_model.encoder.requires_grad_(False)
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
self.unet.to(device, dtype=weight_dtype)
self.vae.to(device, dtype=weight_dtype)
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate)
self.text_encoder, optimizer= accelerator.prepare(self.text_encoder, optimizer) ###
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone()
self.text_encoder.train()
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
if accelerator.is_main_process:
accelerator.init_trackers("EmbFt", config={
"embedding_learning_rate": embedding_learning_rate,
"text_embedding_optimization_steps": effective_emb_train_steps,
})
global_step = 0
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id , subfolder="scheduler")
progress_bar = tqdm(range(0, effective_emb_train_steps),initial=global_step,desc="EmbSteps")
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
latents0_1 = latents0_1.repeat(train_batch_size,1,1,1)
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
latents0_2 = latents0_2.repeat(train_batch_size,1,1,1)
for step in range(max_emb_train_steps):
with accelerator.accumulate(self.text_encoder):
latents_1 = latents0_1.clone().detach()
noise_1 = torch.randn_like(latents_1)
latents_2 = latents0_2.clone().detach()
noise_2 = torch.randn_like(latents_2)
bsz = latents_1.shape[0]
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
timesteps_1 = timesteps_1.long()
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
timesteps_2 = timesteps_2.long()
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
register_attention_disentangled_control(self.unet, decom_controller_1)
encoder_hidden_states_list_1 = sd_prepare_input_decom(
set_string_list_1,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = train_batch_size,
weight_dtype = weight_dtype
)
model_pred_1 = self.unet(
noisy_latents_1,
timesteps_1,
encoder_hidden_states=encoder_hidden_states_list_1,
).sample
register_attention_disentangled_control(self.unet, decom_controller_2)
# import pdb; pdb.set_trace()
encoder_hidden_states_list_2= sd_prepare_input_decom(
set_string_list_2,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = train_batch_size,
weight_dtype = weight_dtype
)
model_pred_2 = self.unet(
noisy_latents_2,
timesteps_2,
encoder_hidden_states = encoder_hidden_states_list_2,
).sample
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") /2
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") /2
loss = loss_1 + loss_2
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
with torch.no_grad():
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
index_no_updates] = orig_embeds_params_1[index_no_updates]
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step >= max_emb_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
self.text_encoder = accelerator.unwrap_model(self.text_encoder) .to(dtype = weight_dtype)
def train_model_2imgs(
self,
image_gt_1,
image_gt_2,
set_string_list_1,
set_string_list_2,
gradient_accumulation_steps = 5,
max_diffusion_train_steps = 100,
diffusion_model_learning_rate = 1e-5,
train_batch_size = 1,
train_full_lora = False,
lora_rank = 4,
lora_alpha = 4
):
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
self.unet.ca_dim = 768
decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
mixed_precision = "fp16"
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps,mixed_precision=mixed_precision)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
self.vae.requires_grad_(False)
self.vae.to(device, dtype=weight_dtype)
self.unet.requires_grad_(False)
self.unet.train()
self.text_encoder.requires_grad_(False)
if not train_full_lora:
trainable_params_list = []
for name, module in self.unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
if module.to_k.in_features == self.unet.ca_dim: # this is cross attention:
module.to_k.weight.requires_grad = True
trainable_params_list.append(module.to_k.weight)
if module.to_k.bias is not None:
module.to_k.bias.requires_grad = True
trainable_params_list.append(module.to_k.bias)
module.to_v.weight.requires_grad = True
trainable_params_list.append(module.to_v.weight)
if module.to_v.bias is not None:
module.to_v.bias.requires_grad = True
trainable_params_list.append(module.to_v.bias)
module.to_q.weight.requires_grad = True
trainable_params_list.append(module.to_q.weight)
if module.to_q.bias is not None:
module.to_q.bias.requires_grad = True
trainable_params_list.append(module.to_q.bias)
else:
unet_lora_config = LoraConfig(
r = lora_rank,
lora_alpha = lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
self.unet.add_adapter(unet_lora_config)
print("training full parameters using lora!")
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
self.text_encoder.to(device, dtype=weight_dtype)
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)
self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
psum2 = sum(p.numel() for p in trainable_params_list)
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
if accelerator.is_main_process:
accelerator.init_trackers("ModelFt", config={
"diffusion_model_learning_rate": diffusion_model_learning_rate,
"diffusion_model_optimization_steps": effective_diffusion_train_steps,
})
global_step = 0
progress_bar = tqdm(range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id, subfolder="scheduler")
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
latents0_1 = latents0_1.repeat(train_batch_size, 1, 1, 1)
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
latents0_2 = latents0_2.repeat(train_batch_size,1, 1, 1)
with torch.no_grad():
encoder_hidden_states_list_1 = sd_prepare_input_decom(
set_string_list_1,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = train_batch_size,
weight_dtype = weight_dtype
)
encoder_hidden_states_list_2 = sd_prepare_input_decom(
set_string_list_2,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = train_batch_size,
weight_dtype = weight_dtype
)
for _ in range(max_diffusion_train_steps):
with accelerator.accumulate(self.unet):
latents_1 = latents0_1.clone().detach()
noise_1 = torch.randn_like(latents_1)
bsz = latents_1.shape[0]
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
timesteps_1 = timesteps_1.long()
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
latents_2 = latents0_2.clone().detach()
noise_2 = torch.randn_like(latents_2)
bsz = latents_2.shape[0]
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
timesteps_2 = timesteps_2.long()
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
register_attention_disentangled_control(self.unet, decom_controller_1)
model_pred_1 = self.unet(
noisy_latents_1,
timesteps_1,
encoder_hidden_states = encoder_hidden_states_list_1,
).sample
register_attention_disentangled_control(self.unet, decom_controller_2)
model_pred_2 = self.unet(
noisy_latents_2,
timesteps_2,
encoder_hidden_states = encoder_hidden_states_list_2,
).sample
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean")
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean")
loss = loss_1 + loss_2
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step >=max_diffusion_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)
@torch.no_grad()
def backward_zT_to_z0_euler_decom(
self,
zT,
cond_emb_list,
uncond_emb=None,
guidance_scale = 1,
num_sampling_steps = 20,
cond_controller = None,
uncond_controller = None,
mask_hard = None,
mask_soft = None,
orig_image = None,
return_intermediate = False,
strength = 1
):
latent_cur = zT
if uncond_emb is None:
uncond_emb = torch.zeros(zT.shape[0], 77, self.unet.ca_dim).to(dtype = zT.dtype, device = zT.device)
if mask_soft is not None:
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
length = init_latents_orig.shape[-1]
noise = torch.randn_like(init_latents_orig)
mask_soft = torch.nn.functional.interpolate(mask_soft.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
if mask_hard is not None:
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
length = init_latents_orig.shape[-1]
noise = torch.randn_like(init_latents_orig)
mask_hard = torch.nn.functional.interpolate(mask_hard.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
intermediate_list = [latent_cur.detach()]
for i in tqdm(range(num_sampling_steps)):
t = self.scheduler.timesteps[i]
latent_input = self.scheduler.scale_model_input(latent_cur, t)
register_attention_disentangled_control(self.unet, uncond_controller)
noise_pred_uncond = self.unet(
latent_input,
t,
encoder_hidden_states=uncond_emb,
).sample
register_attention_disentangled_control(self.unet, cond_controller)
noise_pred_cond = self.unet(
latent_input,
t,
encoder_hidden_states=cond_emb_list,
).sample
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
latent_cur = self.scheduler.step(noise_pred, t, latent_cur, generator = None, return_dict=False)[0]
if return_intermediate is True:
intermediate_list.append(latent_cur)
if mask_hard is not None and mask_soft is not None and i <= strength *num_sampling_steps:
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) + mask_hard.to(latent_cur.device, latent_cur.dtype)
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
elif mask_hard is not None and mask_soft is not None and i > strength *num_sampling_steps:
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
mask = mask_hard.to(latent_cur.device, latent_cur.dtype)
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
elif mask_hard is None and mask_soft is not None and i <= strength *num_sampling_steps:
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
mask = mask_soft.to(latent_cur.device, latent_cur.dtype)
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
elif mask_hard is None and mask_soft is not None and i > strength *num_sampling_steps:
pass
elif mask_hard is not None and mask_soft is None:
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
mask = mask_hard.to(latent_cur.dtype)
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
else: # hard and soft are both none
pass
if return_intermediate is True:
return latent_cur, intermediate_list
else:
return latent_cur
@torch.no_grad()
def sampling(
self,
set_string_list,
cond_controller = None,
uncond_controller = None,
guidance_scale = 7,
num_sampling_steps = 20,
mask_hard = None,
mask_soft = None,
orig_image = None,
strength = 1.,
num_imgs = 1,
normal_token_id_list = [],
seed = 1
):
weight_dtype = torch.float16
self.scheduler.set_timesteps(num_sampling_steps)
self.unet.to(device, dtype=weight_dtype)
self.vae.to(device, dtype=weight_dtype)
self.text_encoder.to(device, dtype=weight_dtype)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
zT = torch.randn(num_imgs, 4, self.resolution//vae_scale_factor,self.resolution//vae_scale_factor).to(device,dtype=weight_dtype)
zT = zT * self.scheduler.init_noise_sigma
cond_emb_list = sd_prepare_input_decom(
set_string_list,
self.tokenizer,
self.text_encoder,
length = 40,
bsz = num_imgs,
weight_dtype = weight_dtype,
normal_token_id_list = normal_token_id_list
)
z0 = self.backward_zT_to_z0_euler_decom(zT, cond_emb_list,
guidance_scale = guidance_scale, num_sampling_steps = num_sampling_steps,
cond_controller = cond_controller, uncond_controller = uncond_controller,
mask_hard = mask_hard, mask_soft = mask_soft, orig_image = orig_image, strength = strength
)
x0 = latent2image(z0, vae = self.vae)
return x0
@torch.no_grad()
def inference_with_mask(
self,
save_path,
guidance_scale = 3,
num_sampling_steps = 50,
strength = 1,
mask_soft = None,
mask_hard= None,
orig_image=None,
mask_list = None,
num_imgs = 1,
seed = 1,
set_string_list = None
):
if mask_list is not None:
mask_list = [m.to(device) for m in mask_list]
else:
mask_list = self.mask_list
if set_string_list is not None:
self.set_string_list = set_string_list
if mask_hard is not None and mask_soft is not None:
check_mask_overlap_torch(mask_hard, mask_soft)
null_controller = DummyController()
decom_controller = GroupedCAController(mask_list = mask_list)
x0 = self.sampling(
self.set_string_list,
guidance_scale = guidance_scale,
num_sampling_steps = num_sampling_steps,
strength = strength,
cond_controller = decom_controller,
uncond_controller = null_controller,
mask_soft = mask_soft,
mask_hard = mask_hard,
orig_image = orig_image,
num_imgs = num_imgs,
seed = seed
)
save_images(x0, save_path)
# from PIL import Image
# return Image.open("example_tmp/text/out_text_0.png")
|