File size: 37,194 Bytes
d807efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8963af6
d807efd
 
 
8963af6
d807efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8963af6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
import torch
from utils import import_model_class_from_model_name_or_path
from transformers import AutoTokenizer
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DDIMScheduler,
    UNet2DConditionModel,
)
from accelerate import Accelerator
from tqdm.auto import tqdm
from utils import sd_prepare_input_decom, save_images
import torch.nn.functional as F
import itertools
from peft import LoraConfig
from controller import GroupedCAController, register_attention_disentangled_control, DummyController
from utils import  image2latent, latent2image
import matplotlib.pyplot as plt
from utils_mask import  check_mask_overlap_torch

device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')

class DEditSDPipeline:
    def __init__(
        self,
        mask_list,
        mask_label_list, 
        mask_list_2 = None,
        mask_label_list_2 = None, 
        resolution = 512,
        num_tokens = 1
    ):
        super().__init__()
        model_id = "CompVis/stable-diffusion-v1-4"
        self.model_id = model_id
        self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False)
        text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder")
        self.text_encoder = text_encoder_cls_one.from_pretrained(model_id, subfolder="text_encoder" ).to(device)
        
        self.unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        self.unet.ca_dim = 768
        self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
        self.scheduler = DDPMScheduler.from_pretrained(model_id , subfolder="scheduler")
        self.scheduler = DDIMScheduler(
                            beta_start=0.00085, 
                            beta_end=0.012, 
                            beta_schedule="scaled_linear", 
                            clip_sample=False, 
                            set_alpha_to_one=True,
                            rescale_betas_zero_snr = False,
                        )
        self.mixed_precision = "fp16"
        self.resolution = resolution
        self.num_tokens = num_tokens
        
        self.mask_list = mask_list
        self.mask_label_list = mask_label_list
        notation_token_list = [phrase.split(" ")[-1] for phrase in mask_label_list]
        placeholder_token_list = ["#"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list)]
        self.set_string_list, placeholder_token_ids = self.add_tokens(placeholder_token_list)
        self.min_added_id = min(placeholder_token_ids)
        self.max_added_id = max(placeholder_token_ids)

        if mask_list_2 is not None:
            self.mask_list_2 = mask_list_2
            self.mask_label_list_2 = mask_label_list_2
            notation_token_list_2  = [phrase.split(" ")[-1] for phrase in mask_label_list_2]
            
            placeholder_token_list_2 = ["$"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list_2)]
            self.set_string_list_2, placeholder_token_ids_2 = self.add_tokens(placeholder_token_list_2)
            self.max_added_id = max(placeholder_token_ids_2)

    def add_tokens_text_encoder_random_init(self, placeholder_token, num_tokens=1):
        # Add the placeholder token in tokenizer
        placeholder_tokens = [placeholder_token]
        # add dummy tokens for multi-vector
        additional_tokens = []
        for i in range(1, num_tokens):
            additional_tokens.append(f"{placeholder_token}_{i}")
        placeholder_tokens += additional_tokens
        num_added_tokens = self.tokenizer.add_tokens(placeholder_tokens) # 49408

        if num_added_tokens != num_tokens:
            raise ValueError(
                f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
                " `placeholder_token` that is not already in the tokenizer."
            )
        placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(placeholder_tokens)
        
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
        token_embeds = self.text_encoder.get_input_embeddings().weight.data
        std, mean = torch.std_mean(token_embeds)
        with torch.no_grad():
            for token_id in placeholder_token_ids:         
                token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean

        set_string = " ".join(self.tokenizer.convert_ids_to_tokens(placeholder_token_ids))

        return set_string, placeholder_token_ids

    def add_tokens(self, placeholder_token_list):
        set_string_list = []
        placeholder_token_ids_list = []
        for str_idx in range(len(placeholder_token_list)):
            placeholder_token = placeholder_token_list[str_idx]
            set_string, placeholder_token_ids = self.add_tokens_text_encoder_random_init(placeholder_token,  num_tokens=self.num_tokens)
            set_string_list.append(set_string)
            placeholder_token_ids_list.append(placeholder_token_ids)
        placeholder_token_ids = list(itertools.chain(*placeholder_token_ids_list)) 
        return set_string_list, placeholder_token_ids

    def train_emb(
        self, 
        image_gt,
        set_string_list,
        gradient_accumulation_steps = 5,
        embedding_learning_rate = 1e-4,
        max_emb_train_steps = 100,
        train_batch_size = 1,
    ):
        decom_controller =  GroupedCAController(mask_list = self.mask_list)
        register_attention_disentangled_control(self.unet, decom_controller)
        
        accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
        self.vae.requires_grad_(False)
        self.unet.requires_grad_(False)

        self.text_encoder.requires_grad_(True)

        self.text_encoder.text_model.encoder.requires_grad_(False)
        self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
        self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
        
        weight_dtype = torch.float32
        if accelerator.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif accelerator.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16

        self.unet.to(device, dtype=weight_dtype)
        self.vae.to(device, dtype=weight_dtype)

        trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
        optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate)
        
        self.text_encoder, optimizer = accelerator.prepare(self.text_encoder, optimizer)

        orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight.data.clone()

        self.text_encoder.train()
        
        effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
        
        if accelerator.is_main_process:
            accelerator.init_trackers("DEdit EmbSteps", config={
                    "embedding_learning_rate": embedding_learning_rate,
                    "text_embedding_optimization_steps": effective_emb_train_steps,
                })
        global_step = 0
        noise_scheduler = self.scheduler
        progress_bar = tqdm(range(0, effective_emb_train_steps), initial = global_step, desc="EmbSteps")
        latents0 = image2latent(image_gt, vae = self.vae, dtype = weight_dtype)
        latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
        
        for _ in range(max_emb_train_steps):
            with accelerator.accumulate(self.text_encoder):
                latents = latents0.clone().detach()
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
                encoder_hidden_states_list = sd_prepare_input_decom(
                    set_string_list, 
                    self.tokenizer, 
                    self.text_encoder, 
                    length = 40,
                    bsz = train_batch_size, 
                    weight_dtype = weight_dtype
                )

                model_pred = self.unet(
                    noisy_latents,
                    timesteps, 
                    encoder_hidden_states = encoder_hidden_states_list,
                ).sample

                loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
                accelerator.backward(loss)
                optimizer.step()
                optimizer.zero_grad()

                index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
                index_no_updates[self.min_added_id : self.max_added_id + 1] = False
                with torch.no_grad():
                    accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
                        index_no_updates] = orig_embeds_params_1[index_no_updates]

            logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                
            if global_step >= max_emb_train_steps:
                break

        accelerator.wait_for_everyone()
        accelerator.end_training()
        self.text_encoder = accelerator.unwrap_model(self.text_encoder).to(dtype = weight_dtype)

    def train_model(
        self, 
        image_gt, 
        set_string_list,
        gradient_accumulation_steps = 5,
        max_diffusion_train_steps = 100,
        diffusion_model_learning_rate = 1e-5,
        train_batch_size = 1,
        train_full_lora = False,
        lora_rank = 4,
        lora_alpha = 4
    ):
        self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
        self.unet.ca_dim = 768
        decom_controller =  GroupedCAController(mask_list = self.mask_list)
        register_attention_disentangled_control(self.unet, decom_controller)
        
        mixed_precision = "fp16"
        accelerator = Accelerator(gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision)
        
        weight_dtype = torch.float32
        if accelerator.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif accelerator.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16
        
        self.vae.requires_grad_(False)
        self.vae.to(device, dtype=weight_dtype)
        
        self.unet.requires_grad_(False)
        self.unet.train()
        
        self.text_encoder.requires_grad_(False)
        
        if not train_full_lora:
            trainable_params_list = []
            for _, module in self.unet.named_modules():
                module_name = type(module).__name__
                if module_name == "Attention":
                    if module.to_k.in_features == self.unet.ca_dim: # this is cross attention:
                        module.to_k.weight.requires_grad = True
                        trainable_params_list.append(module.to_k.weight)
                        if module.to_k.bias is not None:
                            module.to_k.bias.requires_grad = True
                            trainable_params_list.append(module.to_k.bias)                 
                        module.to_v.weight.requires_grad = True
                        trainable_params_list.append(module.to_v.weight)
                        if module.to_v.bias is not None:
                            module.to_v.bias.requires_grad = True
                            trainable_params_list.append(module.to_v.bias)
                        module.to_q.weight.requires_grad = True
                        trainable_params_list.append(module.to_q.weight)
                        if module.to_q.bias is not None:
                            module.to_q.bias.requires_grad = True
                            trainable_params_list.append(module.to_q.bias)
        else:
            unet_lora_config = LoraConfig(
                r=lora_rank,
                lora_alpha=lora_alpha,
                init_lora_weights="gaussian",
                target_modules=["to_k", "to_q", "to_v", "to_out.0"],
            )
            self.unet.add_adapter(unet_lora_config) 
            print("training full parameters using lora!")
            trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
            
        self.text_encoder.to(device, dtype=weight_dtype)
   
        optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)                                 
        self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
        psum2 = sum(p.numel() for p in trainable_params_list)

        effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
        if accelerator.is_main_process:
            accelerator.init_trackers("textual_inversion", config={
                    "diffusion_model_learning_rate": diffusion_model_learning_rate,
                    "diffusion_model_optimization_steps": effective_diffusion_train_steps,
                })
    
        global_step = 0
        progress_bar = tqdm( range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")

        noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler")
        
        latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype)
        latents0 = latents0.repeat(train_batch_size, 1, 1, 1)

        with torch.no_grad():
            encoder_hidden_states_list = sd_prepare_input_decom(
                set_string_list,
                self.tokenizer,
                self.text_encoder,
                length = 40, 
                bsz = train_batch_size,
                weight_dtype = weight_dtype
            )

        for _ in range(max_diffusion_train_steps):
            with accelerator.accumulate(self.unet):
                latents = latents0.clone().detach()
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
                model_pred = self.unet(
                    noisy_latents,
                    timesteps, 
                    encoder_hidden_states=encoder_hidden_states_list,
                ).sample
                loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
                accelerator.backward(loss)
                optimizer.step()
                optimizer.zero_grad()

            logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
            if global_step >=max_diffusion_train_steps:
                break
        accelerator.wait_for_everyone()
        accelerator.end_training()
        self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)

    def train_emb_2imgs(
        self,
        image_gt_1,
        image_gt_2, 
        set_string_list_1,
        set_string_list_2,
        gradient_accumulation_steps = 5,
        embedding_learning_rate = 1e-4,
        max_emb_train_steps = 100,
        train_batch_size = 1,
    ):
        decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
        decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
        accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
        self.vae.requires_grad_(False)
        self.unet.requires_grad_(False)

        self.text_encoder.requires_grad_(True)
        
        self.text_encoder.text_model.encoder.requires_grad_(False)
        self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
        self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
        

        weight_dtype = torch.float32
        if accelerator.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif accelerator.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16

        self.unet.to(device, dtype=weight_dtype)
        self.vae.to(device, dtype=weight_dtype)

        
        trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]

        optimizer = torch.optim.AdamW(trainable_embmat_list_1, lr=embedding_learning_rate)
        self.text_encoder, optimizer= accelerator.prepare(self.text_encoder,  optimizer)  ###
        orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder)  .get_input_embeddings().weight.data.clone()

        self.text_encoder.train()

        effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
        
        if accelerator.is_main_process:
            accelerator.init_trackers("EmbFt", config={
                    "embedding_learning_rate": embedding_learning_rate,
                    "text_embedding_optimization_steps": effective_emb_train_steps,
                })
        
        global_step = 0
        
        noise_scheduler = DDPMScheduler.from_pretrained(self.model_id , subfolder="scheduler")
        progress_bar = tqdm(range(0, effective_emb_train_steps),initial=global_step,desc="EmbSteps")
        latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
        latents0_1 = latents0_1.repeat(train_batch_size,1,1,1)
        
        latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
        latents0_2 = latents0_2.repeat(train_batch_size,1,1,1)
        
        for step in range(max_emb_train_steps):
            with accelerator.accumulate(self.text_encoder):
                latents_1 = latents0_1.clone().detach()
                noise_1 = torch.randn_like(latents_1)
                
                latents_2 = latents0_2.clone().detach()
                noise_2 = torch.randn_like(latents_2)
                
                bsz = latents_1.shape[0]

                timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
                timesteps_1 = timesteps_1.long()
                noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
                
                timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
                timesteps_2 = timesteps_2.long()
                noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)  
                
                register_attention_disentangled_control(self.unet, decom_controller_1)
                encoder_hidden_states_list_1 = sd_prepare_input_decom(
                    set_string_list_1, 
                    self.tokenizer,
                    self.text_encoder,
                    length = 40,
                    bsz = train_batch_size,
                    weight_dtype = weight_dtype
                )
                
                model_pred_1 = self.unet(
                    noisy_latents_1,
                    timesteps_1, 
                    encoder_hidden_states=encoder_hidden_states_list_1,
                ).sample

                register_attention_disentangled_control(self.unet, decom_controller_2)
                # import pdb; pdb.set_trace()
                encoder_hidden_states_list_2= sd_prepare_input_decom(
                    set_string_list_2, 
                    self.tokenizer,
                    self.text_encoder,
                    length = 40,
                    bsz = train_batch_size,
                    weight_dtype = weight_dtype
                )
                
                model_pred_2 = self.unet(
                    noisy_latents_2,
                    timesteps_2, 
                    encoder_hidden_states = encoder_hidden_states_list_2,
                ).sample

                loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") /2
                loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") /2
                loss = loss_1 + loss_2
                accelerator.backward(loss)
                optimizer.step()
                optimizer.zero_grad()

                index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
                index_no_updates[self.min_added_id : self.max_added_id + 1] = False
                with torch.no_grad():
                    accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
                        index_no_updates] = orig_embeds_params_1[index_no_updates]
                
            logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                
            if global_step >= max_emb_train_steps:
                break
        accelerator.wait_for_everyone()
        accelerator.end_training()
        self.text_encoder = accelerator.unwrap_model(self.text_encoder)  .to(dtype = weight_dtype)

    def train_model_2imgs(
        self,
        image_gt_1,
        image_gt_2,
        set_string_list_1,
        set_string_list_2,
        gradient_accumulation_steps = 5,
        max_diffusion_train_steps = 100,
        diffusion_model_learning_rate = 1e-5,
        train_batch_size = 1,
        train_full_lora = False,
        lora_rank = 4,
        lora_alpha = 4
    ):
        self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
        self.unet.ca_dim = 768
        decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
        decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
        
        mixed_precision = "fp16"
        accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps,mixed_precision=mixed_precision)
        
        weight_dtype = torch.float32
        if accelerator.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif accelerator.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16
        
        
        self.vae.requires_grad_(False)
        self.vae.to(device, dtype=weight_dtype)
        self.unet.requires_grad_(False)
        self.unet.train()
        
        self.text_encoder.requires_grad_(False)

        if not train_full_lora:
            trainable_params_list = []
            for name, module in self.unet.named_modules():
                module_name = type(module).__name__
                if module_name == "Attention":
                    if module.to_k.in_features == self.unet.ca_dim: # this is cross attention:
                        module.to_k.weight.requires_grad = True
                        trainable_params_list.append(module.to_k.weight)
                        if module.to_k.bias is not None:
                            module.to_k.bias.requires_grad = True
                            trainable_params_list.append(module.to_k.bias)
                            
                        module.to_v.weight.requires_grad = True
                        trainable_params_list.append(module.to_v.weight)
                        if module.to_v.bias is not None:
                            module.to_v.bias.requires_grad = True
                            trainable_params_list.append(module.to_v.bias)
                        module.to_q.weight.requires_grad = True
                        trainable_params_list.append(module.to_q.weight)
                        if module.to_q.bias is not None:
                            module.to_q.bias.requires_grad = True
                            trainable_params_list.append(module.to_q.bias)
        else:
            unet_lora_config = LoraConfig(
                r = lora_rank,
                lora_alpha = lora_alpha,
                init_lora_weights="gaussian",
                target_modules=["to_k", "to_q", "to_v", "to_out.0"],
            )
            self.unet.add_adapter(unet_lora_config) 
            print("training full parameters using lora!")
            trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
            
        self.text_encoder.to(device, dtype=weight_dtype)    
        optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)                                 
        self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
        psum2 = sum(p.numel() for p in trainable_params_list)

        effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
        if accelerator.is_main_process:
            accelerator.init_trackers("ModelFt", config={
                    "diffusion_model_learning_rate": diffusion_model_learning_rate,
                    "diffusion_model_optimization_steps": effective_diffusion_train_steps,
                })
    
        global_step = 0
        progress_bar = tqdm(range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
        noise_scheduler = DDPMScheduler.from_pretrained(self.model_id, subfolder="scheduler")
        
        latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
        latents0_1 = latents0_1.repeat(train_batch_size, 1, 1, 1)

        latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
        latents0_2 = latents0_2.repeat(train_batch_size,1, 1, 1)
        
        with torch.no_grad():
            encoder_hidden_states_list_1 = sd_prepare_input_decom(
                set_string_list_1,
                self.tokenizer,
                self.text_encoder,
                length = 40, 
                bsz = train_batch_size, 
                weight_dtype = weight_dtype
            )
            encoder_hidden_states_list_2 = sd_prepare_input_decom(
                set_string_list_2,
                self.tokenizer,
                self.text_encoder,
                length = 40,
                bsz = train_batch_size,
                weight_dtype = weight_dtype
            )
            
        for _ in range(max_diffusion_train_steps):
            with accelerator.accumulate(self.unet):
                latents_1 = latents0_1.clone().detach()
                noise_1 = torch.randn_like(latents_1)
                bsz = latents_1.shape[0]
                timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
                timesteps_1 = timesteps_1.long()
                noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
                
                latents_2 = latents0_2.clone().detach()
                noise_2 = torch.randn_like(latents_2)
                bsz = latents_2.shape[0]
                timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
                timesteps_2 = timesteps_2.long()
                noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
                
                register_attention_disentangled_control(self.unet, decom_controller_1)
                model_pred_1 = self.unet(
                    noisy_latents_1,
                    timesteps_1, 
                    encoder_hidden_states = encoder_hidden_states_list_1,
                ).sample
                
                register_attention_disentangled_control(self.unet, decom_controller_2)
                model_pred_2 = self.unet(
                    noisy_latents_2,
                    timesteps_2, 
                    encoder_hidden_states = encoder_hidden_states_list_2,
                ).sample
                
                loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean")
                loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean")
                loss = loss_1 + loss_2
                accelerator.backward(loss)
                optimizer.step()
                optimizer.zero_grad()
                

            logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                
            if global_step >=max_diffusion_train_steps:
                break
        accelerator.wait_for_everyone()
        accelerator.end_training()
        self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)

    @torch.no_grad()
    def backward_zT_to_z0_euler_decom(
        self,
        zT,
        cond_emb_list,
        uncond_emb=None,
        guidance_scale = 1,
        num_sampling_steps = 20,
        cond_controller = None,
        uncond_controller = None,
        mask_hard = None, 
        mask_soft = None,
        orig_image = None,
        return_intermediate = False,
        strength = 1
    ):
        latent_cur = zT
        if uncond_emb is None:
            uncond_emb = torch.zeros(zT.shape[0], 77, self.unet.ca_dim).to(dtype = zT.dtype, device = zT.device)

        if mask_soft is not None:
            init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
            length = init_latents_orig.shape[-1]
            noise = torch.randn_like(init_latents_orig)
            mask_soft = torch.nn.functional.interpolate(mask_soft.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
        
        if mask_hard is not None:
            init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
            length = init_latents_orig.shape[-1]
            noise = torch.randn_like(init_latents_orig) 
            mask_hard = torch.nn.functional.interpolate(mask_hard.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###

        intermediate_list = [latent_cur.detach()]
        for i in tqdm(range(num_sampling_steps)):
            t = self.scheduler.timesteps[i]
            latent_input = self.scheduler.scale_model_input(latent_cur, t)
            
            register_attention_disentangled_control(self.unet, uncond_controller)
            noise_pred_uncond = self.unet(
                                    latent_input, 
                                    t,
                                    encoder_hidden_states=uncond_emb,
                                ).sample
            
            register_attention_disentangled_control(self.unet, cond_controller)
            noise_pred_cond = self.unet(
                                latent_input,
                                t,
                                encoder_hidden_states=cond_emb_list,
                              ).sample
            
            noise_pred =  noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
            latent_cur = self.scheduler.step(noise_pred, t, latent_cur, generator = None, return_dict=False)[0]

            if return_intermediate is True:
                intermediate_list.append(latent_cur)

            if mask_hard is not None and mask_soft is not None and i <= strength *num_sampling_steps:
                init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
                mask = mask_soft.to(latent_cur.device, latent_cur.dtype) + mask_hard.to(latent_cur.device, latent_cur.dtype)
                latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))

            elif mask_hard is not None and mask_soft is not None and i > strength *num_sampling_steps:
                init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
                mask = mask_hard.to(latent_cur.device, latent_cur.dtype)
                latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))

            elif mask_hard is None and mask_soft is not None and i <= strength *num_sampling_steps:
                init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
                mask = mask_soft.to(latent_cur.device, latent_cur.dtype)
                latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
                
            elif mask_hard is None and mask_soft is not None and i > strength *num_sampling_steps:
                pass
            
            elif mask_hard is not None and mask_soft is None:
                init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
                mask = mask_hard.to(latent_cur.dtype)
                latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
                
            else: # hard and soft are both none
                pass
            
        if return_intermediate is True:
            return latent_cur, intermediate_list
        else:
            return latent_cur
        
    @torch.no_grad()
    def sampling(
        self,
        set_string_list, 
        cond_controller = None, 
        uncond_controller = None,
        guidance_scale = 7,
        num_sampling_steps = 20,
        mask_hard = None,
        mask_soft = None,
        orig_image = None,
        strength = 1.,
        num_imgs = 1,
        normal_token_id_list = [],
        seed = 1
    ):
        weight_dtype = torch.float16
        self.scheduler.set_timesteps(num_sampling_steps)
        self.unet.to(device, dtype=weight_dtype)
        self.vae.to(device, dtype=weight_dtype)
        self.text_encoder.to(device, dtype=weight_dtype)
        
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)

        vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        zT = torch.randn(num_imgs, 4, self.resolution//vae_scale_factor,self.resolution//vae_scale_factor).to(device,dtype=weight_dtype)
        zT = zT * self.scheduler.init_noise_sigma   
        
        cond_emb_list = sd_prepare_input_decom(
                            set_string_list, 
                            self.tokenizer,
                            self.text_encoder,
                            length = 40,
                            bsz = num_imgs,
                            weight_dtype = weight_dtype,
                            normal_token_id_list = normal_token_id_list
                        )

        z0 = self.backward_zT_to_z0_euler_decom(zT, cond_emb_list,
                guidance_scale = guidance_scale, num_sampling_steps = num_sampling_steps,
                cond_controller = cond_controller, uncond_controller = uncond_controller, 
                mask_hard = mask_hard, mask_soft = mask_soft, orig_image = orig_image, strength = strength
             )
        x0 = latent2image(z0, vae = self.vae)
        return x0
    
    @torch.no_grad()                 
    def inference_with_mask(
        self,
        save_path,
        guidance_scale = 3,
        num_sampling_steps = 50,
        strength = 1,
        mask_soft = None,
        mask_hard= None,
        orig_image=None,
        mask_list = None,
        num_imgs = 1,
        seed = 1,
        set_string_list = None
    ):
        if mask_list is not None:
            mask_list = [m.to(device) for m in mask_list]
        else:
            mask_list = self.mask_list
        if set_string_list is not None:
            self.set_string_list = set_string_list

        if mask_hard is not None and mask_soft is not None:
            check_mask_overlap_torch(mask_hard, mask_soft)
        null_controller = DummyController()
        decom_controller = GroupedCAController(mask_list = mask_list)

        x0 = self.sampling(
            self.set_string_list, 
            guidance_scale = guidance_scale,
            num_sampling_steps = num_sampling_steps,
            strength = strength,
            cond_controller = decom_controller,
            uncond_controller = null_controller, 
            mask_soft = mask_soft,
            mask_hard = mask_hard,
            orig_image = orig_image,
            num_imgs = num_imgs,
            seed = seed
        )
        save_images(x0, save_path)
        # from PIL import Image
        # return Image.open("example_tmp/text/out_text_0.png")