|
import argparse |
|
import os |
|
import copy |
|
import shutil |
|
|
|
import numpy as np |
|
import json |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
|
|
import sys |
|
|
|
sys.path.append("/path/to/Grounded-Segment-Anything") |
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util import box_ops |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
|
|
from segment_anything import ( |
|
sam_model_registry, |
|
sam_hq_model_registry, |
|
SamPredictor |
|
) |
|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
def load_image_to_resize(image_path, left=0, right=0, top=0, bottom=0, size = 512): |
|
if type(image_path) is str: |
|
image = np.array(Image.open(image_path))[:, :, :3] |
|
else: |
|
image = image_path |
|
h, w, c = image.shape |
|
left = min(left, w-1) |
|
right = min(right, w - left - 1) |
|
top = min(top, h - left - 1) |
|
bottom = min(bottom, h - top - 1) |
|
image = image[top:h-bottom, left:w-right] |
|
h, w, c = image.shape |
|
if h < w: |
|
offset = (w - h) // 2 |
|
image = image[:, offset:offset + h] |
|
elif w < h: |
|
offset = (h - w) // 2 |
|
image = image[offset:offset + w] |
|
image = np.array(Image.fromarray(image).resize((size, size))) |
|
return image |
|
|
|
|
|
def load_image(image_path): |
|
|
|
image_pil = Image.open(image_path).convert("RGB") |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
model.eval() |
|
return model |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
|
|
return boxes_filt, pred_phrases |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
|
|
def show_box(box, ax, label): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
ax.text(x0, y0, label) |
|
|
|
|
|
def save_mask_data(output_dir, mask_list, box_list, label_list): |
|
value = 0 |
|
|
|
mask_img = torch.zeros(mask_list.shape[-2:]) |
|
for idx, mask in enumerate(mask_list): |
|
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask_img.numpy()) |
|
plt.axis('off') |
|
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0) |
|
|
|
json_data = [{ |
|
'value': value, |
|
'label': 'background' |
|
}] |
|
for label, box in zip(label_list, box_list): |
|
value += 1 |
|
name, logit = label.split('(') |
|
logit = logit[:-1] |
|
json_data.append({ |
|
'value': value, |
|
'label': name, |
|
'logit': float(logit), |
|
'box': box.numpy().tolist(), |
|
}) |
|
with open(os.path.join(output_dir, 'mask.json'), 'w') as f: |
|
json.dump(json_data, f) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True) |
|
parser.add_argument("--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h") |
|
parser.add_argument("--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file") |
|
parser.add_argument("--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file") |
|
parser.add_argument("--use_sam_hq", action="store_true", help="using sam-hq for prediction") |
|
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt") |
|
|
|
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") |
|
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") |
|
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False") |
|
parser.add_argument("--name", type=str, default="", help="name of the input image folder") |
|
parser.add_argument("--size", type=int, default=1024, help="image size") |
|
|
|
args = parser.parse_args() |
|
args.base_folder = "/path/to/Grounded-Segment-Anything" |
|
|
|
input_folder = os.path.join(".", args.name) |
|
|
|
args.config = os.path.join(args.base_folder,"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py") |
|
args.grounded_checkpoint = "groundingdino_swint_ogc.pth" |
|
args.sam_checkpoint="sam_vit_h_4b8939.pth" |
|
args.box_threshold = 0.3 |
|
args.text_threshold = 0.25 |
|
args.device = "cuda" |
|
|
|
|
|
config_file = args.config |
|
grounded_checkpoint = os.path.join(args.base_folder,args.grounded_checkpoint) |
|
sam_version = args.sam_version |
|
sam_checkpoint = os.path.join(args.base_folder,args.sam_checkpoint) |
|
if args.sam_hq_checkpoint is not None: |
|
sam_hq_checkpoint = os.path.join(args.base_folder,args.sam_hq_checkpoint) |
|
use_sam_hq = args.use_sam_hq |
|
|
|
text_prompt = args.text_prompt |
|
|
|
box_threshold = args.box_threshold |
|
text_threshold = args.text_threshold |
|
device = args.device |
|
|
|
output_dir = input_folder |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
if len(os.listdir(input_folder)) == 1: |
|
for filename in os.listdir(input_folder): |
|
imgtype = "." + filename.split(".")[-1] |
|
shutil.move(os.path.join(input_folder, filename), os.path.join(input_folder, "img"+imgtype)) |
|
|
|
|
|
|
|
|
|
if os.path.exists(os.path.join(input_folder, "img.jpg")): |
|
image_path = os.path.join(input_folder, "img.jpg") |
|
else: |
|
image_path = os.path.join(input_folder, "img.png") |
|
image = load_image_to_resize(image_path, size = args.size) |
|
image =Image.fromarray(image) |
|
resized_image_path = os.path.join(input_folder, "img_{}.png".format(args.size)) |
|
image.save(resized_image_path) |
|
|
|
image_path = resized_image_path |
|
|
|
image_pil, image = load_image(image_path) |
|
|
|
model = load_model(config_file, grounded_checkpoint, device=device) |
|
|
|
|
|
|
|
|
|
|
|
boxes_filt, pred_phrases = get_grounding_output( |
|
model, image, text_prompt, box_threshold, text_threshold, device=device |
|
) |
|
|
|
|
|
if use_sam_hq: |
|
predictor = SamPredictor(sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device)) |
|
else: |
|
predictor = SamPredictor(sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device)) |
|
image = cv2.imread(image_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
predictor.set_image(image) |
|
|
|
size = image_pil.size |
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) |
|
|
|
masks, _, _ = predictor.predict_torch( |
|
point_coords = None, |
|
point_labels = None, |
|
boxes = transformed_boxes.to(device), |
|
multimask_output = False, |
|
) |
|
|
|
tot_detect = len(masks) |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
for idx, (mask,label) in enumerate(zip(masks,pred_phrases)): |
|
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) |
|
np.save( os.path.join(output_dir, "maskSAM{}_{}.npy".format(idx, label)) ,mask[0].cpu().numpy()) |
|
|
|
for idx, (box, label) in enumerate(zip(boxes_filt, pred_phrases)): |
|
label = label + "_{}".format(idx) |
|
show_box(box.numpy(), plt.gca(), label) |
|
|
|
rec_mask = np.zeros_like(mask[0].cpu().numpy()).astype(np.bool_) |
|
for idx, box in enumerate(boxes_filt): |
|
up = box[0].numpy().astype(np.int32) |
|
down = box[2].numpy().astype(np.int32) |
|
left = box[1].numpy().astype(np.int32) |
|
right = box[3].numpy().astype(np.int32) |
|
rec_mask[left:right, up:down] = True |
|
|
|
plt.axis('off') |
|
plt.savefig( |
|
os.path.join(output_dir, "seg_init_SAM.png"), |
|
bbox_inches="tight", dpi=300, pad_inches=0.0 |
|
) |
|
|
|
mask_detected = np.logical_or.reduce([mask[0].cpu().numpy() for mask in masks ]) |
|
mask_undetected = np.logical_not(mask_detected) |
|
np.save( os.path.join(output_dir, "SAM_detected.npy") ,mask_detected) |
|
np.save( os.path.join(output_dir, "maskSAM{}_rest.npy".format(len(masks))) ,mask_undetected) |
|
plt.imsave( os.path.join(output_dir,"mask_SAM-detected.png"), np.repeat(np.expand_dims( mask_detected.astype(float), axis=2), 3, axis = 2)) |
|
|