Agent_Analysis / app.py
OatNapat's picture
Upload 2 files
bf756d2
raw
history blame
2.43 kB
import joblib
import pandas as pd
import streamlit as st
model = joblib.load('model (1).joblib')
unique_values = joblib.load('unique_values (1).joblib')
unique_Married_Single = unique_values["Married/Single"]
unique_House_Ownership = unique_values["House_Ownership"]
unique_Car_Ownership = unique_values["Car_Ownership"]
unique_Profession = unique_values["Profession"]
unique_CITY = unique_values["CITY"]
unique_STATE = unique_values["STATE"]
def main():
st.title("Loan Risk_Flag Analysis")
with st.form("questionaire"):
Income = st.slider("Income", min_value=10000, max_value=9999999)
Age = st.slider("Age", min_value=10, max_value=100)
Experience = st.slider("Experience", min_value=0, max_value=20)
CURRENT_JOB_YRS = st.slider("CURRENT_JOB_YRS", min_value=0, max_value=14)
CURRENT_HOUSE_YRS = st.slider("CURRENT_HOUSE_YRS", min_value=10, max_value=14)
Married_Single = st.selectbox("Married/Single", unique_Married_Single)
House_Ownership = st.selectbox("House_Ownership", unique_House_Ownership)
Car_Ownership = st.selectbox("Car_Ownership", unique_Car_Ownership)
Profession = st.selectbox("Profession", unique_Profession)
CITY = st.selectbox("CITY", unique_CITY)
STATE = st.selectbox("STATE", unique_STATE)
clicked = st.form_submit_button("Predict Risk_Flag")
if clicked:
result=model.predict(pd.DataFrame({"Income": [Income],
"Age": [Age],
"Experience": [Experience],
"CURRENT_JOB_YRS": [CURRENT_JOB_YRS],
"CURRENT_HOUSE_YRS": [CURRENT_HOUSE_YRS],
"Married_Single": [Married_Single],
"House_Ownership": [House_Ownership],
"Car_Ownership": [Car_Ownership],
"Profession": [Profession],
"CITY": [CITY],
"STATE": [STATE]}))
result = 'none_risk_flag' if result[0] == 1 else 'risk_flag'
st.success('The predicted income is {}'.format(result))
if __name__=='__main__':
main()