File size: 1,582 Bytes
f50d9e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import cv2
import numpy as np
import streamlit as st
@st.cache_data
def bw_filter(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img_gray
@st.cache_data
def vignette(img, level=2):
height, width = img.shape[:2]
# Generate vignette mask using Gaussian kernels.
X_resultant_kernel = cv2.getGaussianKernel(width, width / level)
Y_resultant_kernel = cv2.getGaussianKernel(height, height / level)
# Generating resultant_kernel matrix.
kernel = Y_resultant_kernel * X_resultant_kernel.T
mask = kernel / kernel.max()
img_vignette = np.copy(img)
# Apply the mask to each channel in the input image.
for i in range(3):
img_vignette[:, :, i] = img_vignette[:, :, i] * mask
return img_vignette
@st.cache_data
def sepia(img):
img_sepia = img.copy()
# Converting to RGB as sepia matrix below is for RGB.
img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_BGR2RGB)
img_sepia = np.array(img_sepia, dtype=np.float64)
img_sepia = cv2.transform(
img_sepia, np.matrix([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]])
)
# Clip values to the range [0, 255].
img_sepia = np.clip(img_sepia, 0, 255)
img_sepia = np.array(img_sepia, dtype=np.uint8)
img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_RGB2BGR)
return img_sepia
@st.cache_data
def pencil_sketch(img, ksize=5):
img_blur = cv2.GaussianBlur(img, (ksize, ksize), 0, 0)
img_sketch, _ = cv2.pencilSketch(img_blur)
return img_sketch
|