Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import threading | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from vptq.app_utils import get_chat_loop_generator | |
models = [ | |
{ | |
"name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v12-k65536-4096-woft", | |
"bits": "2.3 bits" | |
}, | |
{ | |
"name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-256-woft", | |
"bits": "3 bits" | |
}, | |
{ | |
"name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-4096-woft", | |
"bits": "3.5 bits" | |
}, | |
{ | |
"name": "VPTQ-community/Meta-Llama-3.1-70B-Instruct-v8-k32768-0-woft", | |
"bits": "1.85 bits" | |
}, | |
] | |
def initialize_history(): | |
""" | |
Initializes the GPU utilization and memory usage history. | |
""" | |
for _ in range(100): | |
gpu_info = get_gpu_info() | |
gpu_util_history.append(round(gpu_info.get('gpu_util', 0), 1)) | |
mem_usage_history.append(round(gpu_info.get('mem_percent', 0), 1)) | |
model_choices = [f"{model['name']} ({model['bits']})" for model in models] | |
display_to_model = {f"{model['name']} ({model['bits']})": model['name'] for model in models} | |
def download_model(model): | |
print(f"Downloading {model['name']}...") | |
snapshot_download(repo_id=model['name']) | |
def download_models_in_background(): | |
print('Downloading models for the first time...') | |
for model in models: | |
download_model(model) | |
download_thread = threading.Thread(target=download_models_in_background) | |
download_thread.start() | |
loaded_model = None | |
loaded_model_name = None | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
selected_model_display_label, | |
): | |
model_name = display_to_model[selected_model_display_label] | |
global loaded_model | |
global loaded_model_name | |
# Check if the model is already loaded | |
if model_name is not loaded_model_name: | |
# Load and store the model in the cache | |
loaded_model = get_chat_loop_generator(model_name) | |
loaded_model_name = model_name | |
chat_completion = loaded_model | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# enable_gpu_info() | |
with gr.Blocks(fill_height=True) as demo: | |
# with gr.Row(): | |
# def update_chart(): | |
# return _update_charts(chart_height=200) | |
# gpu_chart = gr.Plot(update_chart, every=0.1) # update every 0.1 seconds | |
with gr.Column(): | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Dropdown( | |
choices=model_choices, | |
value=model_choices[0], | |
label="Select Model", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
share = os.getenv("SHARE_LINK", None) in ["1", "true", "True"] | |
demo.launch(share=share) | |