Spaces:
Runtime error
Runtime error
import numpy as np | |
import cv2 as cv | |
from keras.models import load_model | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import matplotlib.pyplot as plt | |
import os | |
import streamlit as st | |
from styling import footer | |
st.cache(allow_output_mutation=True) | |
st.title("TB Image Classifier") | |
# | |
gpu_devices = tf.config.experimental.list_physical_devices("GPU") | |
for device in gpu_devices: | |
tf.config.experimental.set_memory_growth(device, True) | |
# loading model | |
model_path = "./tb_model" | |
model = load_model(model_path) | |
# loading the imaage | |
file = st.file_uploader( | |
"Upload the image", | |
type=["png", "jpg"], | |
accept_multiple_files=False, | |
key=None, | |
help=None, | |
on_change=None, | |
args=None, | |
kwargs=None, | |
) | |
run = st.button( | |
"Make Prediction", key=None, help=None, on_click=None, args=None, kwargs=None | |
) | |
st.subheader("This app classifies an x-ray image if it has TB or not") | |
# image laoder | |
def load_image(img_path, img_size, show=False): | |
img = image.load_img(img_path, target_size=img_size) | |
img_tensor = image.img_to_array(img) | |
img_tensor = np.expand_dims(img_tensor, axis=0) # expanding image tensor | |
img_tensor = img_tensor / 255.0 # scaling the image_T | |
if show: | |
plt.imshow(img_tensor[0]) | |
plt.axis("off") | |
plt.show() | |
return img_tensor | |
img_size = (300, 300) | |
img_path = "inference image from medscape.jpg" | |
classes = ["Normal", "Tuberculosis"] | |
if __name__ == "__main__": | |
## load img | |
footer() | |
if run == True: | |
if file is not None: | |
img = load_image(img_path, img_size) | |
pred = model.predict(img) | |
output = classes[round(pred[0][0])] | |
st.subheader(f"The image is {output}") | |
else: | |
st.write("Please upload an image first") | |
# st.image(file) | |