tb_prediction_space / streamlit_deploy.py
Owos's picture
added styling
c531a5c
raw
history blame
1.83 kB
import numpy as np
import cv2 as cv
from keras.models import load_model
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import matplotlib.pyplot as plt
import os
import streamlit as st
from styling import footer
st.cache(allow_output_mutation=True)
st.title("TB Image Classifier")
#
gpu_devices = tf.config.experimental.list_physical_devices("GPU")
for device in gpu_devices:
tf.config.experimental.set_memory_growth(device, True)
# loading model
model_path = "./tb_model"
model = load_model(model_path)
# loading the imaage
file = st.file_uploader(
"Upload the image",
type=["png", "jpg"],
accept_multiple_files=False,
key=None,
help=None,
on_change=None,
args=None,
kwargs=None,
)
run = st.button(
"Make Prediction", key=None, help=None, on_click=None, args=None, kwargs=None
)
st.subheader("This app classifies an x-ray image if it has TB or not")
# image laoder
def load_image(img_path, img_size, show=False):
img = image.load_img(img_path, target_size=img_size)
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0) # expanding image tensor
img_tensor = img_tensor / 255.0 # scaling the image_T
if show:
plt.imshow(img_tensor[0])
plt.axis("off")
plt.show()
return img_tensor
img_size = (300, 300)
img_path = "inference image from medscape.jpg"
classes = ["Normal", "Tuberculosis"]
if __name__ == "__main__":
## load img
footer()
if run == True:
if file is not None:
img = load_image(img_path, img_size)
pred = model.predict(img)
output = classes[round(pred[0][0])]
st.subheader(f"The image is {output}")
else:
st.write("Please upload an image first")
# st.image(file)