File size: 5,903 Bytes
b4851e0
 
 
 
 
 
 
 
 
 
139f14b
 
b4851e0
 
 
 
 
 
 
 
 
 
 
 
 
 
24a3e20
b4851e0
24a3e20
139f14b
24a3e20
b4851e0
139f14b
b4851e0
 
24a3e20
139f14b
 
 
 
 
 
 
 
 
 
 
 
b4851e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139f14b
b4851e0
 
 
 
 
139f14b
 
 
 
 
 
b4851e0
 
 
 
 
 
 
139f14b
b4851e0
139f14b
b4851e0
139f14b
b4851e0
139f14b
 
b4851e0
 
139f14b
 
 
b4851e0
 
139f14b
 
 
 
 
 
 
b4851e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139f14b
 
b4851e0
 
 
 
 
 
 
 
 
 
139f14b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]

def fields_paired(raw_class):
    return [(k,v) for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]

# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []

# Init
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Algorithm", "markdown", True, never_hidden=True)])

#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ↑", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])

# Algorithm information
auto_eval_column_dict.append(["info", ColumnContent, ColumnContent("Info", "str", True)])
auto_eval_column_dict.append(["update_timestamp", ColumnContent, ColumnContent("Update timestamp", "str", False)])
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Algorithm sha", "str", False, False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class AlgoDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji


class AlgoType(Enum):
    PT = AlgoDetails(name="pretrained", symbol="🟒")
    FT = AlgoDetails(name="fine-tuned", symbol="πŸ”Ά")
    IFT = AlgoDetails(name="instruction-tuned", symbol="β­•")
    RL = AlgoDetails(name="RL-tuned", symbol="🟦")
    Unknown = AlgoDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return AlgoType.FT
        if "pretrained" in type or "🟒" in type:
            return AlgoType.PT
        if "RL-tuned" in type or "🟦" in type:
            return AlgoType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return AlgoType.IFT
        return AlgoType.Unknown

class WeightType(Enum):
    Adapter = AlgoDetails("Adapter")
    Original = AlgoDetails("Original")
    Delta = AlgoDetails("Delta")

class Precision(Enum):
    float16 = AlgoDetails("float16")
    bfloat16 = AlgoDetails("bfloat16")
    float32 = AlgoDetails("float32")
    #qt_8bit = AlgoDetails("8bit")
    #qt_4bit = AlgoDetails("4bit")
    #qt_GPTQ = AlgoDetails("GPTQ")
    Unknown = AlgoDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["float32"]:
            return Precision.float32
        #if precision in ["8bit"]:
        #    return Precision.qt_8bit
        #if precision in ["4bit"]:
        #    return Precision.qt_4bit
        #if precision in ["GPTQ", "None"]:
        #    return Precision.qt_GPTQ
        return Precision.Unknown

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [(t.value.col_name, t.value.benchmark) for t in Tasks]
COLS_PAIRED = [(c.name, name) for name, c in fields_paired(AutoEvalColumn) if not c.hidden]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}