Spaces:
Runtime error
Runtime error
File size: 5,903 Bytes
b4851e0 139f14b b4851e0 24a3e20 b4851e0 24a3e20 139f14b 24a3e20 b4851e0 139f14b b4851e0 24a3e20 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b b4851e0 139f14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
def fields_paired(raw_class):
return [(k,v) for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Algorithm", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Algorithm information
auto_eval_column_dict.append(["info", ColumnContent, ColumnContent("Info", "str", True)])
auto_eval_column_dict.append(["update_timestamp", ColumnContent, ColumnContent("Update timestamp", "str", False)])
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Algorithm sha", "str", False, False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class AlgoDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class AlgoType(Enum):
PT = AlgoDetails(name="pretrained", symbol="π’")
FT = AlgoDetails(name="fine-tuned", symbol="πΆ")
IFT = AlgoDetails(name="instruction-tuned", symbol="β")
RL = AlgoDetails(name="RL-tuned", symbol="π¦")
Unknown = AlgoDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πΆ" in type:
return AlgoType.FT
if "pretrained" in type or "π’" in type:
return AlgoType.PT
if "RL-tuned" in type or "π¦" in type:
return AlgoType.RL
if "instruction-tuned" in type or "β" in type:
return AlgoType.IFT
return AlgoType.Unknown
class WeightType(Enum):
Adapter = AlgoDetails("Adapter")
Original = AlgoDetails("Original")
Delta = AlgoDetails("Delta")
class Precision(Enum):
float16 = AlgoDetails("float16")
bfloat16 = AlgoDetails("bfloat16")
float32 = AlgoDetails("float32")
#qt_8bit = AlgoDetails("8bit")
#qt_4bit = AlgoDetails("4bit")
#qt_GPTQ = AlgoDetails("GPTQ")
Unknown = AlgoDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["float32"]:
return Precision.float32
#if precision in ["8bit"]:
# return Precision.qt_8bit
#if precision in ["4bit"]:
# return Precision.qt_4bit
#if precision in ["GPTQ", "None"]:
# return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [(t.value.col_name, t.value.benchmark) for t in Tasks]
COLS_PAIRED = [(c.name, name) for name, c in fields_paired(AutoEvalColumn) if not c.hidden]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
} |