imseldrith commited on
Commit
51a2766
·
1 Parent(s): 21dcd64

Upload folder using huggingface_hub (#2)

Browse files

- Upload folder using huggingface_hub (f951dca6027557bb96195fe9dfe0f6cb4ee57004)

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +101 -13
  2. facefusion/__init__.py +0 -0
  3. facefusion/choices.py +26 -0
  4. facefusion/common_helper.py +10 -0
  5. facefusion/content_analyser.py +103 -0
  6. facefusion/core.py +318 -0
  7. facefusion/download.py +44 -0
  8. facefusion/execution_helper.py +22 -0
  9. facefusion/face_analyser.py +347 -0
  10. facefusion/face_helper.py +111 -0
  11. facefusion/face_masker.py +128 -0
  12. facefusion/face_store.py +47 -0
  13. facefusion/ffmpeg.py +81 -0
  14. facefusion/filesystem.py +91 -0
  15. facefusion/globals.py +51 -0
  16. facefusion/installer.py +92 -0
  17. facefusion/logger.py +39 -0
  18. facefusion/metadata.py +13 -0
  19. facefusion/normalizer.py +34 -0
  20. facefusion/processors/__init__.py +0 -0
  21. facefusion/processors/frame/__init__.py +0 -0
  22. facefusion/processors/frame/choices.py +13 -0
  23. facefusion/processors/frame/core.py +98 -0
  24. facefusion/processors/frame/globals.py +10 -0
  25. facefusion/processors/frame/modules/__init__.py +0 -0
  26. facefusion/processors/frame/modules/face_debugger.py +142 -0
  27. facefusion/processors/frame/modules/face_enhancer.py +249 -0
  28. facefusion/processors/frame/modules/face_swapper.py +302 -0
  29. facefusion/processors/frame/modules/frame_enhancer.py +172 -0
  30. facefusion/processors/frame/typings.py +7 -0
  31. facefusion/typing.py +51 -0
  32. facefusion/uis/__init__.py +0 -0
  33. facefusion/uis/assets/fixes.css +7 -0
  34. facefusion/uis/assets/overrides.css +44 -0
  35. facefusion/uis/choices.py +7 -0
  36. facefusion/uis/components/__init__.py +0 -0
  37. facefusion/uis/components/about.py +23 -0
  38. facefusion/uis/components/benchmark.py +132 -0
  39. facefusion/uis/components/benchmark_options.py +29 -0
  40. facefusion/uis/components/common_options.py +38 -0
  41. facefusion/uis/components/execution.py +34 -0
  42. facefusion/uis/components/execution_queue_count.py +28 -0
  43. facefusion/uis/components/execution_thread_count.py +29 -0
  44. facefusion/uis/components/face_analyser.py +98 -0
  45. facefusion/uis/components/face_masker.py +123 -0
  46. facefusion/uis/components/face_selector.py +164 -0
  47. facefusion/uis/components/frame_processors.py +40 -0
  48. facefusion/uis/components/frame_processors_options.py +141 -0
  49. facefusion/uis/components/limit_resources.py +27 -0
  50. facefusion/uis/components/output.py +62 -0
README.md CHANGED
@@ -1,13 +1,101 @@
1
- ---
2
- title: MyDeepFakeAI
3
- emoji: 🏃
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 4.13.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FaceFusion
2
+ ==========
3
+
4
+ > Next generation face swapper and enhancer.
5
+
6
+ [![Build Status](https://img.shields.io/github/actions/workflow/status/facefusion/facefusion/ci.yml.svg?branch=master)](https://github.com/facefusion/facefusion/actions?query=workflow:ci)
7
+ ![License](https://img.shields.io/badge/license-MIT-green)
8
+
9
+
10
+ Preview
11
+ -------
12
+
13
+ ![Preview](https://raw.githubusercontent.com/facefusion/facefusion/master/.github/preview.png?sanitize=true)
14
+
15
+
16
+ Installation
17
+ ------------
18
+
19
+ Be aware, the installation needs technical skills and is not for beginners. Please do not open platform and installation related issues on GitHub. We have a very helpful [Discord](https://join.facefusion.io) community that will guide you to complete the installation.
20
+
21
+ Get started with the [installation](https://docs.facefusion.io/installation) guide.
22
+
23
+
24
+ Usage
25
+ -----
26
+
27
+ Run the command:
28
+
29
+ ```
30
+ python run.py [options]
31
+
32
+ options:
33
+ -h, --help show this help message and exit
34
+ -s SOURCE_PATHS, --source SOURCE_PATHS select a source image
35
+ -t TARGET_PATH, --target TARGET_PATH select a target image or video
36
+ -o OUTPUT_PATH, --output OUTPUT_PATH specify the output file or directory
37
+ -v, --version show program's version number and exit
38
+
39
+ misc:
40
+ --skip-download omit automate downloads and lookups
41
+ --headless run the program in headless mode
42
+ --log-level {error,warn,info,debug} choose from the available log levels
43
+
44
+ execution:
45
+ --execution-providers EXECUTION_PROVIDERS [EXECUTION_PROVIDERS ...] choose from the available execution providers (choices: cpu, ...)
46
+ --execution-thread-count [1-128] specify the number of execution threads
47
+ --execution-queue-count [1-32] specify the number of execution queries
48
+ --max-memory [0-128] specify the maximum amount of ram to be used (in gb)
49
+
50
+ face analyser:
51
+ --face-analyser-order {left-right,right-left,top-bottom,bottom-top,small-large,large-small,best-worst,worst-best} specify the order used for the face analyser
52
+ --face-analyser-age {child,teen,adult,senior} specify the age used for the face analyser
53
+ --face-analyser-gender {male,female} specify the gender used for the face analyser
54
+ --face-detector-model {retinaface,yunet} specify the model used for the face detector
55
+ --face-detector-size {160x160,320x320,480x480,512x512,640x640,768x768,960x960,1024x1024} specify the size threshold used for the face detector
56
+ --face-detector-score [0.0-1.0] specify the score threshold used for the face detector
57
+
58
+ face selector:
59
+ --face-selector-mode {reference,one,many} specify the mode for the face selector
60
+ --reference-face-position REFERENCE_FACE_POSITION specify the position of the reference face
61
+ --reference-face-distance [0.0-1.5] specify the distance between the reference face and the target face
62
+ --reference-frame-number REFERENCE_FRAME_NUMBER specify the number of the reference frame
63
+
64
+ face mask:
65
+ --face-mask-types FACE_MASK_TYPES [FACE_MASK_TYPES ...] choose from the available face mask types (choices: box, occlusion, region)
66
+ --face-mask-blur [0.0-1.0] specify the blur amount for face mask
67
+ --face-mask-padding FACE_MASK_PADDING [FACE_MASK_PADDING ...] specify the face mask padding (top, right, bottom, left) in percent
68
+ --face-mask-regions FACE_MASK_REGIONS [FACE_MASK_REGIONS ...] choose from the available face mask regions (choices: skin, left-eyebrow, right-eyebrow, left-eye, right-eye, eye-glasses, nose, mouth, upper-lip, lower-lip)
69
+
70
+ frame extraction:
71
+ --trim-frame-start TRIM_FRAME_START specify the start frame for extraction
72
+ --trim-frame-end TRIM_FRAME_END specify the end frame for extraction
73
+ --temp-frame-format {jpg,png} specify the image format used for frame extraction
74
+ --temp-frame-quality [0-100] specify the image quality used for frame extraction
75
+ --keep-temp retain temporary frames after processing
76
+
77
+ output creation:
78
+ --output-image-quality [0-100] specify the quality used for the output image
79
+ --output-video-encoder {libx264,libx265,libvpx-vp9,h264_nvenc,hevc_nvenc} specify the encoder used for the output video
80
+ --output-video-quality [0-100] specify the quality used for the output video
81
+ --keep-fps preserve the frames per second (fps) of the target
82
+ --skip-audio omit audio from the target
83
+
84
+ frame processors:
85
+ --frame-processors FRAME_PROCESSORS [FRAME_PROCESSORS ...] choose from the available frame processors (choices: face_debugger, face_enhancer, face_swapper, frame_enhancer, ...)
86
+ --face-debugger-items FACE_DEBUGGER_ITEMS [FACE_DEBUGGER_ITEMS ...] specify the face debugger items (choices: bbox, kps, face-mask, score)
87
+ --face-enhancer-model {codeformer,gfpgan_1.2,gfpgan_1.3,gfpgan_1.4,gpen_bfr_256,gpen_bfr_512,restoreformer} choose the model for the frame processor
88
+ --face-enhancer-blend [0-100] specify the blend amount for the frame processor
89
+ --face-swapper-model {blendswap_256,inswapper_128,inswapper_128_fp16,simswap_256,simswap_512_unofficial} choose the model for the frame processor
90
+ --frame-enhancer-model {real_esrgan_x2plus,real_esrgan_x4plus,real_esrnet_x4plus} choose the model for the frame processor
91
+ --frame-enhancer-blend [0-100] specify the blend amount for the frame processor
92
+
93
+ uis:
94
+ --ui-layouts UI_LAYOUTS [UI_LAYOUTS ...] choose from the available ui layouts (choices: benchmark, webcam, default, ...)
95
+ ```
96
+
97
+
98
+ Documentation
99
+ -------------
100
+
101
+ Read the [documentation](https://docs.facefusion.io) for a deep dive.
facefusion/__init__.py ADDED
File without changes
facefusion/choices.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from facefusion.typing import FaceSelectorMode, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceMaskType, FaceMaskRegion, TempFrameFormat, OutputVideoEncoder
4
+ from facefusion.common_helper import create_range
5
+
6
+ face_analyser_orders : List[FaceAnalyserOrder] = [ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best' ]
7
+ face_analyser_ages : List[FaceAnalyserAge] = [ 'child', 'teen', 'adult', 'senior' ]
8
+ face_analyser_genders : List[FaceAnalyserGender] = [ 'male', 'female' ]
9
+ face_detector_models : List[str] = [ 'retinaface', 'yunet' ]
10
+ face_detector_sizes : List[str] = [ '160x160', '320x320', '480x480', '512x512', '640x640', '768x768', '960x960', '1024x1024' ]
11
+ face_selector_modes : List[FaceSelectorMode] = [ 'reference', 'one', 'many' ]
12
+ face_mask_types : List[FaceMaskType] = [ 'box', 'occlusion', 'region' ]
13
+ face_mask_regions : List[FaceMaskRegion] = [ 'skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'eye-glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip' ]
14
+ temp_frame_formats : List[TempFrameFormat] = [ 'jpg', 'png' ]
15
+ output_video_encoders : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc' ]
16
+
17
+ execution_thread_count_range : List[float] = create_range(1, 128, 1)
18
+ execution_queue_count_range : List[float] = create_range(1, 32, 1)
19
+ max_memory_range : List[float] = create_range(0, 128, 1)
20
+ face_detector_score_range : List[float] = create_range(0.0, 1.0, 0.05)
21
+ face_mask_blur_range : List[float] = create_range(0.0, 1.0, 0.05)
22
+ face_mask_padding_range : List[float] = create_range(0, 100, 1)
23
+ reference_face_distance_range : List[float] = create_range(0.0, 1.5, 0.05)
24
+ temp_frame_quality_range : List[float] = create_range(0, 100, 1)
25
+ output_image_quality_range : List[float] = create_range(0, 100, 1)
26
+ output_video_quality_range : List[float] = create_range(0, 100, 1)
facefusion/common_helper.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Any
2
+ import numpy
3
+
4
+
5
+ def create_metavar(ranges : List[Any]) -> str:
6
+ return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']'
7
+
8
+
9
+ def create_range(start : float, stop : float, step : float) -> List[float]:
10
+ return (numpy.around(numpy.arange(start, stop + step, step), decimals = 2)).tolist()
facefusion/content_analyser.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict
2
+ from functools import lru_cache
3
+ import threading
4
+ import cv2
5
+ import numpy
6
+ import onnxruntime
7
+ from tqdm import tqdm
8
+
9
+ import facefusion.globals
10
+ from facefusion import wording
11
+ from facefusion.typing import Frame, ModelValue
12
+ from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_fps
13
+ from facefusion.filesystem import resolve_relative_path
14
+ from facefusion.download import conditional_download
15
+
16
+ CONTENT_ANALYSER = None
17
+ THREAD_LOCK : threading.Lock = threading.Lock()
18
+ MODELS : Dict[str, ModelValue] =\
19
+ {
20
+ 'open_nsfw':
21
+ {
22
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx',
23
+ 'path': resolve_relative_path('../.assets/models/open_nsfw.onnx')
24
+ }
25
+ }
26
+ MAX_PROBABILITY = 0.80
27
+ MAX_RATE = 5
28
+ STREAM_COUNTER = 0
29
+
30
+
31
+ def get_content_analyser() -> Any:
32
+ global CONTENT_ANALYSER
33
+
34
+ with THREAD_LOCK:
35
+ if CONTENT_ANALYSER is None:
36
+ model_path = MODELS.get('open_nsfw').get('path')
37
+ CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
38
+ return CONTENT_ANALYSER
39
+
40
+
41
+ def clear_content_analyser() -> None:
42
+ global CONTENT_ANALYSER
43
+
44
+ CONTENT_ANALYSER = None
45
+
46
+
47
+ def pre_check() -> bool:
48
+ if not facefusion.globals.skip_download:
49
+ download_directory_path = resolve_relative_path('../.assets/models')
50
+ model_url = MODELS.get('open_nsfw').get('url')
51
+ conditional_download(download_directory_path, [ model_url ])
52
+ return True
53
+
54
+
55
+ def analyse_stream(frame : Frame, fps : float) -> bool:
56
+ global STREAM_COUNTER
57
+
58
+ STREAM_COUNTER = STREAM_COUNTER + 1
59
+ if STREAM_COUNTER % int(fps) == 0:
60
+ return analyse_frame(frame)
61
+ return False
62
+
63
+
64
+ def prepare_frame(frame : Frame) -> Frame:
65
+ frame = cv2.resize(frame, (224, 224)).astype(numpy.float32)
66
+ frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32)
67
+ frame = numpy.expand_dims(frame, axis = 0)
68
+ return frame
69
+
70
+
71
+ def analyse_frame(frame : Frame) -> bool:
72
+ content_analyser = get_content_analyser()
73
+ frame = prepare_frame(frame)
74
+ probability = content_analyser.run(None,
75
+ {
76
+ 'input:0': frame
77
+ })[0][0][1]
78
+ return probability > MAX_PROBABILITY
79
+
80
+
81
+ @lru_cache(maxsize = None)
82
+ def analyse_image(image_path : str) -> bool:
83
+ frame = read_image(image_path)
84
+ return analyse_frame(frame)
85
+
86
+
87
+ @lru_cache(maxsize = None)
88
+ def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool:
89
+ video_frame_total = count_video_frame_total(video_path)
90
+ fps = detect_fps(video_path)
91
+ frame_range = range(start_frame or 0, end_frame or video_frame_total)
92
+ rate = 0.0
93
+ counter = 0
94
+ with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
95
+ for frame_number in frame_range:
96
+ if frame_number % int(fps) == 0:
97
+ frame = get_video_frame(video_path, frame_number)
98
+ if analyse_frame(frame):
99
+ counter += 1
100
+ rate = counter * int(fps) / len(frame_range) * 100
101
+ progress.update()
102
+ progress.set_postfix(rate = rate)
103
+ return rate > MAX_RATE
facefusion/core.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.environ['OMP_NUM_THREADS'] = '1'
4
+
5
+ import signal
6
+ import ssl
7
+ import sys
8
+ import warnings
9
+ import platform
10
+ import shutil
11
+ import onnxruntime
12
+ from argparse import ArgumentParser, HelpFormatter
13
+
14
+ import facefusion.choices
15
+ import facefusion.globals
16
+ from facefusion.face_analyser import get_one_face, get_average_face
17
+ from facefusion.face_store import get_reference_faces, append_reference_face
18
+ from facefusion.vision import get_video_frame, detect_fps, read_image, read_static_images
19
+ from facefusion import face_analyser, face_masker, content_analyser, metadata, logger, wording
20
+ from facefusion.content_analyser import analyse_image, analyse_video
21
+ from facefusion.processors.frame.core import get_frame_processors_modules, load_frame_processor_module
22
+ from facefusion.common_helper import create_metavar
23
+ from facefusion.execution_helper import encode_execution_providers, decode_execution_providers
24
+ from facefusion.normalizer import normalize_output_path, normalize_padding
25
+ from facefusion.filesystem import is_image, is_video, list_module_names, get_temp_frame_paths, create_temp, move_temp, clear_temp
26
+ from facefusion.ffmpeg import extract_frames, compress_image, merge_video, restore_audio
27
+
28
+ onnxruntime.set_default_logger_severity(3)
29
+ warnings.filterwarnings('ignore', category = UserWarning, module = 'gradio')
30
+ warnings.filterwarnings('ignore', category = UserWarning, module = 'torchvision')
31
+
32
+ if platform.system().lower() == 'darwin':
33
+ ssl._create_default_https_context = ssl._create_unverified_context
34
+
35
+
36
+ def cli() -> None:
37
+ signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
38
+ program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 120), add_help = False)
39
+ # general
40
+ program.add_argument('-s', '--source', action = 'append', help = wording.get('source_help'), dest = 'source_paths')
41
+ program.add_argument('-t', '--target', help = wording.get('target_help'), dest = 'target_path')
42
+ program.add_argument('-o', '--output', help = wording.get('output_help'), dest = 'output_path')
43
+ program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
44
+ # misc
45
+ group_misc = program.add_argument_group('misc')
46
+ group_misc.add_argument('--skip-download', help = wording.get('skip_download_help'), action = 'store_true')
47
+ group_misc.add_argument('--headless', help = wording.get('headless_help'), action = 'store_true')
48
+ group_misc.add_argument('--log-level', help = wording.get('log_level_help'), default = 'info', choices = logger.get_log_levels())
49
+ # execution
50
+ execution_providers = encode_execution_providers(onnxruntime.get_available_providers())
51
+ group_execution = program.add_argument_group('execution')
52
+ group_execution.add_argument('--execution-providers', help = wording.get('execution_providers_help').format(choices = ', '.join(execution_providers)), default = [ 'cpu' ], choices = execution_providers, nargs = '+', metavar = 'EXECUTION_PROVIDERS')
53
+ group_execution.add_argument('--execution-thread-count', help = wording.get('execution_thread_count_help'), type = int, default = 4, choices = facefusion.choices.execution_thread_count_range, metavar = create_metavar(facefusion.choices.execution_thread_count_range))
54
+ group_execution.add_argument('--execution-queue-count', help = wording.get('execution_queue_count_help'), type = int, default = 1, choices = facefusion.choices.execution_queue_count_range, metavar = create_metavar(facefusion.choices.execution_queue_count_range))
55
+ group_execution.add_argument('--max-memory', help = wording.get('max_memory_help'), type = int, choices = facefusion.choices.max_memory_range, metavar = create_metavar(facefusion.choices.max_memory_range))
56
+ # face analyser
57
+ group_face_analyser = program.add_argument_group('face analyser')
58
+ group_face_analyser.add_argument('--face-analyser-order', help = wording.get('face_analyser_order_help'), default = 'left-right', choices = facefusion.choices.face_analyser_orders)
59
+ group_face_analyser.add_argument('--face-analyser-age', help = wording.get('face_analyser_age_help'), choices = facefusion.choices.face_analyser_ages)
60
+ group_face_analyser.add_argument('--face-analyser-gender', help = wording.get('face_analyser_gender_help'), choices = facefusion.choices.face_analyser_genders)
61
+ group_face_analyser.add_argument('--face-detector-model', help = wording.get('face_detector_model_help'), default = 'retinaface', choices = facefusion.choices.face_detector_models)
62
+ group_face_analyser.add_argument('--face-detector-size', help = wording.get('face_detector_size_help'), default = '640x640', choices = facefusion.choices.face_detector_sizes)
63
+ group_face_analyser.add_argument('--face-detector-score', help = wording.get('face_detector_score_help'), type = float, default = 0.5, choices = facefusion.choices.face_detector_score_range, metavar = create_metavar(facefusion.choices.face_detector_score_range))
64
+ # face selector
65
+ group_face_selector = program.add_argument_group('face selector')
66
+ group_face_selector.add_argument('--face-selector-mode', help = wording.get('face_selector_mode_help'), default = 'reference', choices = facefusion.choices.face_selector_modes)
67
+ group_face_selector.add_argument('--reference-face-position', help = wording.get('reference_face_position_help'), type = int, default = 0)
68
+ group_face_selector.add_argument('--reference-face-distance', help = wording.get('reference_face_distance_help'), type = float, default = 0.6, choices = facefusion.choices.reference_face_distance_range, metavar = create_metavar(facefusion.choices.reference_face_distance_range))
69
+ group_face_selector.add_argument('--reference-frame-number', help = wording.get('reference_frame_number_help'), type = int, default = 0)
70
+ # face mask
71
+ group_face_mask = program.add_argument_group('face mask')
72
+ group_face_mask.add_argument('--face-mask-types', help = wording.get('face_mask_types_help').format(choices = ', '.join(facefusion.choices.face_mask_types)), default = [ 'box' ], choices = facefusion.choices.face_mask_types, nargs = '+', metavar = 'FACE_MASK_TYPES')
73
+ group_face_mask.add_argument('--face-mask-blur', help = wording.get('face_mask_blur_help'), type = float, default = 0.3, choices = facefusion.choices.face_mask_blur_range, metavar = create_metavar(facefusion.choices.face_mask_blur_range))
74
+ group_face_mask.add_argument('--face-mask-padding', help = wording.get('face_mask_padding_help'), type = int, default = [ 0, 0, 0, 0 ], nargs = '+')
75
+ group_face_mask.add_argument('--face-mask-regions', help = wording.get('face_mask_regions_help').format(choices = ', '.join(facefusion.choices.face_mask_regions)), default = facefusion.choices.face_mask_regions, choices = facefusion.choices.face_mask_regions, nargs = '+', metavar = 'FACE_MASK_REGIONS')
76
+ # frame extraction
77
+ group_frame_extraction = program.add_argument_group('frame extraction')
78
+ group_frame_extraction.add_argument('--trim-frame-start', help = wording.get('trim_frame_start_help'), type = int)
79
+ group_frame_extraction.add_argument('--trim-frame-end', help = wording.get('trim_frame_end_help'), type = int)
80
+ group_frame_extraction.add_argument('--temp-frame-format', help = wording.get('temp_frame_format_help'), default = 'jpg', choices = facefusion.choices.temp_frame_formats)
81
+ group_frame_extraction.add_argument('--temp-frame-quality', help = wording.get('temp_frame_quality_help'), type = int, default = 100, choices = facefusion.choices.temp_frame_quality_range, metavar = create_metavar(facefusion.choices.temp_frame_quality_range))
82
+ group_frame_extraction.add_argument('--keep-temp', help = wording.get('keep_temp_help'), action = 'store_true')
83
+ # output creation
84
+ group_output_creation = program.add_argument_group('output creation')
85
+ group_output_creation.add_argument('--output-image-quality', help = wording.get('output_image_quality_help'), type = int, default = 80, choices = facefusion.choices.output_image_quality_range, metavar = create_metavar(facefusion.choices.output_image_quality_range))
86
+ group_output_creation.add_argument('--output-video-encoder', help = wording.get('output_video_encoder_help'), default = 'libx264', choices = facefusion.choices.output_video_encoders)
87
+ group_output_creation.add_argument('--output-video-quality', help = wording.get('output_video_quality_help'), type = int, default = 80, choices = facefusion.choices.output_video_quality_range, metavar = create_metavar(facefusion.choices.output_video_quality_range))
88
+ group_output_creation.add_argument('--keep-fps', help = wording.get('keep_fps_help'), action = 'store_true')
89
+ group_output_creation.add_argument('--skip-audio', help = wording.get('skip_audio_help'), action = 'store_true')
90
+ # frame processors
91
+ available_frame_processors = list_module_names('facefusion/processors/frame/modules')
92
+ program = ArgumentParser(parents = [ program ], formatter_class = program.formatter_class, add_help = True)
93
+ group_frame_processors = program.add_argument_group('frame processors')
94
+ group_frame_processors.add_argument('--frame-processors', help = wording.get('frame_processors_help').format(choices = ', '.join(available_frame_processors)), default = [ 'face_swapper' ], nargs = '+')
95
+ for frame_processor in available_frame_processors:
96
+ frame_processor_module = load_frame_processor_module(frame_processor)
97
+ frame_processor_module.register_args(group_frame_processors)
98
+ # uis
99
+ group_uis = program.add_argument_group('uis')
100
+ group_uis.add_argument('--ui-layouts', help = wording.get('ui_layouts_help').format(choices = ', '.join(list_module_names('facefusion/uis/layouts'))), default = [ 'default' ], nargs = '+')
101
+ run(program)
102
+
103
+
104
+ def apply_args(program : ArgumentParser) -> None:
105
+ args = program.parse_args()
106
+ # general
107
+ facefusion.globals.source_paths = args.source_paths
108
+ facefusion.globals.target_path = args.target_path
109
+ facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, args.output_path)
110
+ # misc
111
+ facefusion.globals.skip_download = args.skip_download
112
+ facefusion.globals.headless = args.headless
113
+ facefusion.globals.log_level = args.log_level
114
+ # execution
115
+ facefusion.globals.execution_providers = decode_execution_providers(args.execution_providers)
116
+ facefusion.globals.execution_thread_count = args.execution_thread_count
117
+ facefusion.globals.execution_queue_count = args.execution_queue_count
118
+ facefusion.globals.max_memory = args.max_memory
119
+ # face analyser
120
+ facefusion.globals.face_analyser_order = args.face_analyser_order
121
+ facefusion.globals.face_analyser_age = args.face_analyser_age
122
+ facefusion.globals.face_analyser_gender = args.face_analyser_gender
123
+ facefusion.globals.face_detector_model = args.face_detector_model
124
+ facefusion.globals.face_detector_size = args.face_detector_size
125
+ facefusion.globals.face_detector_score = args.face_detector_score
126
+ # face selector
127
+ facefusion.globals.face_selector_mode = args.face_selector_mode
128
+ facefusion.globals.reference_face_position = args.reference_face_position
129
+ facefusion.globals.reference_face_distance = args.reference_face_distance
130
+ facefusion.globals.reference_frame_number = args.reference_frame_number
131
+ # face mask
132
+ facefusion.globals.face_mask_types = args.face_mask_types
133
+ facefusion.globals.face_mask_blur = args.face_mask_blur
134
+ facefusion.globals.face_mask_padding = normalize_padding(args.face_mask_padding)
135
+ facefusion.globals.face_mask_regions = args.face_mask_regions
136
+ # frame extraction
137
+ facefusion.globals.trim_frame_start = args.trim_frame_start
138
+ facefusion.globals.trim_frame_end = args.trim_frame_end
139
+ facefusion.globals.temp_frame_format = args.temp_frame_format
140
+ facefusion.globals.temp_frame_quality = args.temp_frame_quality
141
+ facefusion.globals.keep_temp = args.keep_temp
142
+ # output creation
143
+ facefusion.globals.output_image_quality = args.output_image_quality
144
+ facefusion.globals.output_video_encoder = args.output_video_encoder
145
+ facefusion.globals.output_video_quality = args.output_video_quality
146
+ facefusion.globals.keep_fps = args.keep_fps
147
+ facefusion.globals.skip_audio = args.skip_audio
148
+ # frame processors
149
+ available_frame_processors = list_module_names('facefusion/processors/frame/modules')
150
+ facefusion.globals.frame_processors = args.frame_processors
151
+ for frame_processor in available_frame_processors:
152
+ frame_processor_module = load_frame_processor_module(frame_processor)
153
+ frame_processor_module.apply_args(program)
154
+ # uis
155
+ facefusion.globals.ui_layouts = args.ui_layouts
156
+
157
+
158
+ def run(program : ArgumentParser) -> None:
159
+ apply_args(program)
160
+ logger.init(facefusion.globals.log_level)
161
+ limit_resources()
162
+ if not pre_check() or not content_analyser.pre_check() or not face_analyser.pre_check() or not face_masker.pre_check():
163
+ return
164
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
165
+ if not frame_processor_module.pre_check():
166
+ return
167
+ if facefusion.globals.headless:
168
+ conditional_process()
169
+ else:
170
+ import facefusion.uis.core as ui
171
+
172
+ for ui_layout in ui.get_ui_layouts_modules(facefusion.globals.ui_layouts):
173
+ if not ui_layout.pre_check():
174
+ return
175
+ ui.launch()
176
+
177
+
178
+ def destroy() -> None:
179
+ if facefusion.globals.target_path:
180
+ clear_temp(facefusion.globals.target_path)
181
+ sys.exit()
182
+
183
+
184
+ def limit_resources() -> None:
185
+ if facefusion.globals.max_memory:
186
+ memory = facefusion.globals.max_memory * 1024 ** 3
187
+ if platform.system().lower() == 'darwin':
188
+ memory = facefusion.globals.max_memory * 1024 ** 6
189
+ if platform.system().lower() == 'windows':
190
+ import ctypes
191
+
192
+ kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
193
+ kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
194
+ else:
195
+ import resource
196
+
197
+ resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
198
+
199
+
200
+ def pre_check() -> bool:
201
+ if sys.version_info < (3, 9):
202
+ logger.error(wording.get('python_not_supported').format(version = '3.9'), __name__.upper())
203
+ print(wording.get('python_not_supported').format(version = '3.9'), __name__.upper())
204
+ return False
205
+ if not shutil.which('ffmpeg'):
206
+ logger.error(wording.get('ffmpeg_not_installed'), __name__.upper())
207
+ print(wording.get('ffmpeg_not_installed'), __name__.upper())
208
+ return False
209
+ return True
210
+
211
+
212
+ def conditional_process() -> None:
213
+ conditional_append_reference_faces()
214
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
215
+ if not frame_processor_module.pre_process('output'):
216
+ return
217
+ if is_image(facefusion.globals.target_path):
218
+ process_image()
219
+ if is_video(facefusion.globals.target_path):
220
+ process_video()
221
+
222
+
223
+ def conditional_append_reference_faces() -> None:
224
+ if 'reference' in facefusion.globals.face_selector_mode and not get_reference_faces():
225
+ source_frames = read_static_images(facefusion.globals.source_paths)
226
+ source_face = get_average_face(source_frames)
227
+ if is_video(facefusion.globals.target_path):
228
+ reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
229
+ else:
230
+ reference_frame = read_image(facefusion.globals.target_path)
231
+ reference_face = get_one_face(reference_frame, facefusion.globals.reference_face_position)
232
+ append_reference_face('origin', reference_face)
233
+ if source_face and reference_face:
234
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
235
+ reference_frame = frame_processor_module.get_reference_frame(source_face, reference_face, reference_frame)
236
+ reference_face = get_one_face(reference_frame, facefusion.globals.reference_face_position)
237
+ append_reference_face(frame_processor_module.__name__, reference_face)
238
+
239
+
240
+ def process_image() -> None:
241
+ if analyse_image(facefusion.globals.target_path):
242
+ return
243
+ shutil.copy2(facefusion.globals.target_path, facefusion.globals.output_path)
244
+ # process frame
245
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
246
+ logger.info(wording.get('processing'), frame_processor_module.NAME)
247
+ print(wording.get('processing'), frame_processor_module.NAME)
248
+ frame_processor_module.process_image(facefusion.globals.source_paths, facefusion.globals.output_path, facefusion.globals.output_path)
249
+ frame_processor_module.post_process()
250
+ # compress image
251
+ logger.info(wording.get('compressing_image'), __name__.upper())
252
+ print(wording.get('compressing_image'), __name__.upper())
253
+ if not compress_image(facefusion.globals.output_path):
254
+ logger.error(wording.get('compressing_image_failed'), __name__.upper())
255
+ print(wording.get('compressing_image_failed'), __name__.upper())
256
+ # validate image
257
+ if is_image(facefusion.globals.output_path):
258
+ logger.info(wording.get('processing_image_succeed'), __name__.upper())
259
+ print(wording.get('processing_image_succeed'), __name__.upper())
260
+ else:
261
+ logger.error(wording.get('processing_image_failed'), __name__.upper())
262
+ print(wording.get('processing_image_failed'), __name__.upper())
263
+
264
+
265
+ def process_video() -> None:
266
+ if analyse_video(facefusion.globals.target_path, facefusion.globals.trim_frame_start, facefusion.globals.trim_frame_end):
267
+ return
268
+ fps = detect_fps(facefusion.globals.target_path) if facefusion.globals.keep_fps else 25.0
269
+ # create temp
270
+ logger.info(wording.get('creating_temp'), __name__.upper())
271
+ print(wording.get('creating_temp'), __name__.upper())
272
+ create_temp(facefusion.globals.target_path)
273
+ # extract frames
274
+ logger.info(wording.get('extracting_frames_fps').format(fps = fps), __name__.upper())
275
+ print(wording.get('extracting_frames_fps').format(fps = fps), __name__.upper())
276
+ extract_frames(facefusion.globals.target_path, fps)
277
+ # process frame
278
+ temp_frame_paths = get_temp_frame_paths(facefusion.globals.target_path)
279
+ if temp_frame_paths:
280
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
281
+ logger.info(wording.get('processing'), frame_processor_module.NAME)
282
+ print(wording.get('processing'), frame_processor_module.NAME)
283
+ frame_processor_module.process_video(facefusion.globals.source_paths, temp_frame_paths)
284
+ frame_processor_module.post_process()
285
+ else:
286
+ logger.error(wording.get('temp_frames_not_found'), __name__.upper())
287
+ print(wording.get('temp_frames_not_found'), __name__.upper())
288
+ return
289
+ # merge video
290
+ logger.info(wording.get('merging_video_fps').format(fps = fps), __name__.upper())
291
+ print(wording.get('merging_video_fps').format(fps = fps), __name__.upper())
292
+ if not merge_video(facefusion.globals.target_path, fps):
293
+ logger.error(wording.get('merging_video_failed'), __name__.upper())
294
+ print(wording.get('merging_video_failed'), __name__.upper())
295
+ return
296
+ # handle audio
297
+ if facefusion.globals.skip_audio:
298
+ logger.info(wording.get('skipping_audio'), __name__.upper())
299
+ print(wording.get('skipping_audio'), __name__.upper())
300
+ move_temp(facefusion.globals.target_path, facefusion.globals.output_path)
301
+ else:
302
+ logger.info(wording.get('restoring_audio'), __name__.upper())
303
+ print(wording.get('restoring_audio'), __name__.upper())
304
+ if not restore_audio(facefusion.globals.target_path, facefusion.globals.output_path):
305
+ logger.warn(wording.get('restoring_audio_skipped'), __name__.upper())
306
+ print(wording.get('restoring_audio_skipped'), __name__.upper())
307
+ move_temp(facefusion.globals.target_path, facefusion.globals.output_path)
308
+ # clear temp
309
+ logger.info(wording.get('clearing_temp'), __name__.upper())
310
+ print(wording.get('clearing_temp'), __name__.upper())
311
+ clear_temp(facefusion.globals.target_path)
312
+ # validate video
313
+ if is_video(facefusion.globals.output_path):
314
+ logger.info(wording.get('processing_video_succeed'), __name__.upper())
315
+ print(wording.get('processing_video_succeed'), __name__.upper())
316
+ else:
317
+ logger.error(wording.get('processing_video_failed'), __name__.upper())
318
+ print(wording.get('processing_video_failed'), __name__.upper())
facefusion/download.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import urllib.request
4
+ from typing import List
5
+ from concurrent.futures import ThreadPoolExecutor
6
+ from functools import lru_cache
7
+ from tqdm import tqdm
8
+
9
+ import facefusion.globals
10
+ from facefusion import wording
11
+ from facefusion.filesystem import is_file
12
+
13
+
14
+ def conditional_download(download_directory_path : str, urls : List[str]) -> None:
15
+ with ThreadPoolExecutor() as executor:
16
+ for url in urls:
17
+ executor.submit(get_download_size, url)
18
+ for url in urls:
19
+ download_file_path = os.path.join(download_directory_path, os.path.basename(url))
20
+ initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0
21
+ total = get_download_size(url)
22
+ if initial < total:
23
+ with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
24
+ subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
25
+ current = initial
26
+ while current < total:
27
+ if is_file(download_file_path):
28
+ current = os.path.getsize(download_file_path)
29
+ progress.update(current - progress.n)
30
+
31
+
32
+ @lru_cache(maxsize = None)
33
+ def get_download_size(url : str) -> int:
34
+ try:
35
+ response = urllib.request.urlopen(url, timeout = 10)
36
+ return int(response.getheader('Content-Length'))
37
+ except (OSError, ValueError):
38
+ return 0
39
+
40
+
41
+ def is_download_done(url : str, file_path : str) -> bool:
42
+ if is_file(file_path):
43
+ return get_download_size(url) == os.path.getsize(file_path)
44
+ return False
facefusion/execution_helper.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ import onnxruntime
3
+
4
+
5
+ def encode_execution_providers(execution_providers : List[str]) -> List[str]:
6
+ return [ execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers ]
7
+
8
+
9
+ def decode_execution_providers(execution_providers: List[str]) -> List[str]:
10
+ available_execution_providers = onnxruntime.get_available_providers()
11
+ encoded_execution_providers = encode_execution_providers(available_execution_providers)
12
+ return [ execution_provider for execution_provider, encoded_execution_provider in zip(available_execution_providers, encoded_execution_providers) if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers) ]
13
+
14
+
15
+ def map_device(execution_providers : List[str]) -> str:
16
+ if 'CoreMLExecutionProvider' in execution_providers:
17
+ return 'mps'
18
+ if 'CUDAExecutionProvider' in execution_providers or 'ROCMExecutionProvider' in execution_providers :
19
+ return 'cuda'
20
+ if 'OpenVINOExecutionProvider' in execution_providers:
21
+ return 'mkl'
22
+ return 'cpu'
facefusion/face_analyser.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Optional, List, Tuple
2
+ import threading
3
+ import cv2
4
+ import numpy
5
+ import onnxruntime
6
+
7
+ import facefusion.globals
8
+ from facefusion.download import conditional_download
9
+ from facefusion.face_store import get_static_faces, set_static_faces
10
+ from facefusion.face_helper import warp_face, create_static_anchors, distance_to_kps, distance_to_bbox, apply_nms
11
+ from facefusion.filesystem import resolve_relative_path
12
+ from facefusion.typing import Frame, Face, FaceSet, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelSet, Bbox, Kps, Score, Embedding
13
+ from facefusion.vision import resize_frame_dimension
14
+
15
+ FACE_ANALYSER = None
16
+ THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
17
+ THREAD_LOCK : threading.Lock = threading.Lock()
18
+ MODELS : ModelSet =\
19
+ {
20
+ 'face_detector_retinaface':
21
+ {
22
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx',
23
+ 'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
24
+ },
25
+ 'face_detector_yunet':
26
+ {
27
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx',
28
+ 'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx')
29
+ },
30
+ 'face_recognizer_arcface_blendswap':
31
+ {
32
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
33
+ 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
34
+ },
35
+ 'face_recognizer_arcface_inswapper':
36
+ {
37
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx',
38
+ 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
39
+ },
40
+ 'face_recognizer_arcface_simswap':
41
+ {
42
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx',
43
+ 'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx')
44
+ },
45
+ 'gender_age':
46
+ {
47
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx',
48
+ 'path': resolve_relative_path('../.assets/models/gender_age.onnx')
49
+ }
50
+ }
51
+
52
+
53
+ def get_face_analyser() -> Any:
54
+ global FACE_ANALYSER
55
+
56
+ with THREAD_LOCK:
57
+ if FACE_ANALYSER is None:
58
+ if facefusion.globals.face_detector_model == 'retinaface':
59
+ face_detector = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = facefusion.globals.execution_providers)
60
+ if facefusion.globals.face_detector_model == 'yunet':
61
+ face_detector = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0))
62
+ if facefusion.globals.face_recognizer_model == 'arcface_blendswap':
63
+ face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendswap').get('path'), providers = facefusion.globals.execution_providers)
64
+ if facefusion.globals.face_recognizer_model == 'arcface_inswapper':
65
+ face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = facefusion.globals.execution_providers)
66
+ if facefusion.globals.face_recognizer_model == 'arcface_simswap':
67
+ face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = facefusion.globals.execution_providers)
68
+ gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = facefusion.globals.execution_providers)
69
+ FACE_ANALYSER =\
70
+ {
71
+ 'face_detector': face_detector,
72
+ 'face_recognizer': face_recognizer,
73
+ 'gender_age': gender_age
74
+ }
75
+ return FACE_ANALYSER
76
+
77
+
78
+ def clear_face_analyser() -> Any:
79
+ global FACE_ANALYSER
80
+
81
+ FACE_ANALYSER = None
82
+
83
+
84
+ def pre_check() -> bool:
85
+ if not facefusion.globals.skip_download:
86
+ download_directory_path = resolve_relative_path('../.assets/models')
87
+ model_urls =\
88
+ [
89
+ MODELS.get('face_detector_retinaface').get('url'),
90
+ MODELS.get('face_detector_yunet').get('url'),
91
+ MODELS.get('face_recognizer_arcface_inswapper').get('url'),
92
+ MODELS.get('face_recognizer_arcface_simswap').get('url'),
93
+ MODELS.get('gender_age').get('url')
94
+ ]
95
+ conditional_download(download_directory_path, model_urls)
96
+ return True
97
+
98
+
99
+ def extract_faces(frame: Frame) -> List[Face]:
100
+ face_detector_width, face_detector_height = map(int, facefusion.globals.face_detector_size.split('x'))
101
+ frame_height, frame_width, _ = frame.shape
102
+ temp_frame = resize_frame_dimension(frame, face_detector_width, face_detector_height)
103
+ temp_frame_height, temp_frame_width, _ = temp_frame.shape
104
+ ratio_height = frame_height / temp_frame_height
105
+ ratio_width = frame_width / temp_frame_width
106
+ if facefusion.globals.face_detector_model == 'retinaface':
107
+ bbox_list, kps_list, score_list = detect_with_retinaface(temp_frame, temp_frame_height, temp_frame_width, face_detector_height, face_detector_width, ratio_height, ratio_width)
108
+ return create_faces(frame, bbox_list, kps_list, score_list)
109
+ elif facefusion.globals.face_detector_model == 'yunet':
110
+ bbox_list, kps_list, score_list = detect_with_yunet(temp_frame, temp_frame_height, temp_frame_width, ratio_height, ratio_width)
111
+ return create_faces(frame, bbox_list, kps_list, score_list)
112
+ return []
113
+
114
+
115
+ def detect_with_retinaface(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, face_detector_height : int, face_detector_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]:
116
+ face_detector = get_face_analyser().get('face_detector')
117
+ bbox_list = []
118
+ kps_list = []
119
+ score_list = []
120
+ feature_strides = [ 8, 16, 32 ]
121
+ feature_map_channel = 3
122
+ anchor_total = 2
123
+ prepare_frame = numpy.zeros((face_detector_height, face_detector_width, 3))
124
+ prepare_frame[:temp_frame_height, :temp_frame_width, :] = temp_frame
125
+ temp_frame = (prepare_frame - 127.5) / 128.0
126
+ temp_frame = numpy.expand_dims(temp_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
127
+ with THREAD_SEMAPHORE:
128
+ detections = face_detector.run(None,
129
+ {
130
+ face_detector.get_inputs()[0].name: temp_frame
131
+ })
132
+ for index, feature_stride in enumerate(feature_strides):
133
+ keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0]
134
+ if keep_indices.any():
135
+ stride_height = face_detector_height // feature_stride
136
+ stride_width = face_detector_width // feature_stride
137
+ anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
138
+ bbox_raw = (detections[index + feature_map_channel] * feature_stride)
139
+ kps_raw = detections[index + feature_map_channel * 2] * feature_stride
140
+ for bbox in distance_to_bbox(anchors, bbox_raw)[keep_indices]:
141
+ bbox_list.append(numpy.array(
142
+ [
143
+ bbox[0] * ratio_width,
144
+ bbox[1] * ratio_height,
145
+ bbox[2] * ratio_width,
146
+ bbox[3] * ratio_height
147
+ ]))
148
+ for kps in distance_to_kps(anchors, kps_raw)[keep_indices]:
149
+ kps_list.append(kps * [ ratio_width, ratio_height ])
150
+ for score in detections[index][keep_indices]:
151
+ score_list.append(score[0])
152
+ return bbox_list, kps_list, score_list
153
+
154
+
155
+ def detect_with_yunet(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]:
156
+ face_detector = get_face_analyser().get('face_detector')
157
+ face_detector.setInputSize((temp_frame_width, temp_frame_height))
158
+ face_detector.setScoreThreshold(facefusion.globals.face_detector_score)
159
+ bbox_list = []
160
+ kps_list = []
161
+ score_list = []
162
+ with THREAD_SEMAPHORE:
163
+ _, detections = face_detector.detect(temp_frame)
164
+ if detections.any():
165
+ for detection in detections:
166
+ bbox_list.append(numpy.array(
167
+ [
168
+ detection[0] * ratio_width,
169
+ detection[1] * ratio_height,
170
+ (detection[0] + detection[2]) * ratio_width,
171
+ (detection[1] + detection[3]) * ratio_height
172
+ ]))
173
+ kps_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height])
174
+ score_list.append(detection[14])
175
+ return bbox_list, kps_list, score_list
176
+
177
+
178
+ def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], score_list : List[Score]) -> List[Face]:
179
+ faces = []
180
+ if facefusion.globals.face_detector_score > 0:
181
+ sort_indices = numpy.argsort(-numpy.array(score_list))
182
+ bbox_list = [ bbox_list[index] for index in sort_indices ]
183
+ kps_list = [ kps_list[index] for index in sort_indices ]
184
+ score_list = [ score_list[index] for index in sort_indices ]
185
+ keep_indices = apply_nms(bbox_list, 0.4)
186
+ for index in keep_indices:
187
+ bbox = bbox_list[index]
188
+ kps = kps_list[index]
189
+ score = score_list[index]
190
+ embedding, normed_embedding = calc_embedding(frame, kps)
191
+ gender, age = detect_gender_age(frame, kps)
192
+ faces.append(Face(
193
+ bbox = bbox,
194
+ kps = kps,
195
+ score = score,
196
+ embedding = embedding,
197
+ normed_embedding = normed_embedding,
198
+ gender = gender,
199
+ age = age
200
+ ))
201
+ return faces
202
+
203
+
204
+ def calc_embedding(temp_frame : Frame, kps : Kps) -> Tuple[Embedding, Embedding]:
205
+ face_recognizer = get_face_analyser().get('face_recognizer')
206
+ crop_frame, matrix = warp_face(temp_frame, kps, 'arcface_112_v2', (112, 112))
207
+ crop_frame = crop_frame.astype(numpy.float32) / 127.5 - 1
208
+ crop_frame = crop_frame[:, :, ::-1].transpose(2, 0, 1)
209
+ crop_frame = numpy.expand_dims(crop_frame, axis = 0)
210
+ embedding = face_recognizer.run(None,
211
+ {
212
+ face_recognizer.get_inputs()[0].name: crop_frame
213
+ })[0]
214
+ embedding = embedding.ravel()
215
+ normed_embedding = embedding / numpy.linalg.norm(embedding)
216
+ return embedding, normed_embedding
217
+
218
+
219
+ def detect_gender_age(frame : Frame, kps : Kps) -> Tuple[int, int]:
220
+ gender_age = get_face_analyser().get('gender_age')
221
+ crop_frame, affine_matrix = warp_face(frame, kps, 'arcface_112_v2', (96, 96))
222
+ crop_frame = numpy.expand_dims(crop_frame, axis = 0).transpose(0, 3, 1, 2).astype(numpy.float32)
223
+ prediction = gender_age.run(None,
224
+ {
225
+ gender_age.get_inputs()[0].name: crop_frame
226
+ })[0][0]
227
+ gender = int(numpy.argmax(prediction[:2]))
228
+ age = int(numpy.round(prediction[2] * 100))
229
+ return gender, age
230
+
231
+
232
+ def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]:
233
+ many_faces = get_many_faces(frame)
234
+ if many_faces:
235
+ try:
236
+ return many_faces[position]
237
+ except IndexError:
238
+ return many_faces[-1]
239
+ return None
240
+
241
+
242
+ def get_average_face(frames : List[Frame], position : int = 0) -> Optional[Face]:
243
+ average_face = None
244
+ faces = []
245
+ embedding_list = []
246
+ normed_embedding_list = []
247
+ for frame in frames:
248
+ face = get_one_face(frame, position)
249
+ if face:
250
+ faces.append(face)
251
+ embedding_list.append(face.embedding)
252
+ normed_embedding_list.append(face.normed_embedding)
253
+ if faces:
254
+ average_face = Face(
255
+ bbox = faces[0].bbox,
256
+ kps = faces[0].kps,
257
+ score = faces[0].score,
258
+ embedding = numpy.mean(embedding_list, axis = 0),
259
+ normed_embedding = numpy.mean(normed_embedding_list, axis = 0),
260
+ gender = faces[0].gender,
261
+ age = faces[0].age
262
+ )
263
+ return average_face
264
+
265
+
266
+ def get_many_faces(frame : Frame) -> List[Face]:
267
+ try:
268
+ faces_cache = get_static_faces(frame)
269
+ if faces_cache:
270
+ faces = faces_cache
271
+ else:
272
+ faces = extract_faces(frame)
273
+ set_static_faces(frame, faces)
274
+ if facefusion.globals.face_analyser_order:
275
+ faces = sort_by_order(faces, facefusion.globals.face_analyser_order)
276
+ if facefusion.globals.face_analyser_age:
277
+ faces = filter_by_age(faces, facefusion.globals.face_analyser_age)
278
+ if facefusion.globals.face_analyser_gender:
279
+ faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender)
280
+ return faces
281
+ except (AttributeError, ValueError):
282
+ return []
283
+
284
+
285
+ def find_similar_faces(frame : Frame, reference_faces : FaceSet, face_distance : float) -> List[Face]:
286
+ similar_faces : List[Face] = []
287
+ many_faces = get_many_faces(frame)
288
+
289
+ if reference_faces:
290
+ for reference_set in reference_faces:
291
+ if not similar_faces:
292
+ for reference_face in reference_faces[reference_set]:
293
+ for face in many_faces:
294
+ if compare_faces(face, reference_face, face_distance):
295
+ similar_faces.append(face)
296
+ return similar_faces
297
+
298
+
299
+ def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool:
300
+ if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
301
+ current_face_distance = 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
302
+ return current_face_distance < face_distance
303
+ return False
304
+
305
+
306
+ def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]:
307
+ if order == 'left-right':
308
+ return sorted(faces, key = lambda face: face.bbox[0])
309
+ if order == 'right-left':
310
+ return sorted(faces, key = lambda face: face.bbox[0], reverse = True)
311
+ if order == 'top-bottom':
312
+ return sorted(faces, key = lambda face: face.bbox[1])
313
+ if order == 'bottom-top':
314
+ return sorted(faces, key = lambda face: face.bbox[1], reverse = True)
315
+ if order == 'small-large':
316
+ return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1]))
317
+ if order == 'large-small':
318
+ return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1]), reverse = True)
319
+ if order == 'best-worst':
320
+ return sorted(faces, key = lambda face: face.score, reverse = True)
321
+ if order == 'worst-best':
322
+ return sorted(faces, key = lambda face: face.score)
323
+ return faces
324
+
325
+
326
+ def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]:
327
+ filter_faces = []
328
+ for face in faces:
329
+ if face.age < 13 and age == 'child':
330
+ filter_faces.append(face)
331
+ elif face.age < 19 and age == 'teen':
332
+ filter_faces.append(face)
333
+ elif face.age < 60 and age == 'adult':
334
+ filter_faces.append(face)
335
+ elif face.age > 59 and age == 'senior':
336
+ filter_faces.append(face)
337
+ return filter_faces
338
+
339
+
340
+ def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]:
341
+ filter_faces = []
342
+ for face in faces:
343
+ if face.gender == 0 and gender == 'female':
344
+ filter_faces.append(face)
345
+ if face.gender == 1 and gender == 'male':
346
+ filter_faces.append(face)
347
+ return filter_faces
facefusion/face_helper.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Tuple, List
2
+ from cv2.typing import Size
3
+ from functools import lru_cache
4
+ import cv2
5
+ import numpy
6
+
7
+ from facefusion.typing import Bbox, Kps, Frame, Mask, Matrix, Template
8
+
9
+ TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
10
+ {
11
+ 'arcface_112_v1': numpy.array(
12
+ [
13
+ [ 39.7300, 51.1380 ],
14
+ [ 72.2700, 51.1380 ],
15
+ [ 56.0000, 68.4930 ],
16
+ [ 42.4630, 87.0100 ],
17
+ [ 69.5370, 87.0100 ]
18
+ ]),
19
+ 'arcface_112_v2': numpy.array(
20
+ [
21
+ [ 38.2946, 51.6963 ],
22
+ [ 73.5318, 51.5014 ],
23
+ [ 56.0252, 71.7366 ],
24
+ [ 41.5493, 92.3655 ],
25
+ [ 70.7299, 92.2041 ]
26
+ ]),
27
+ 'arcface_128_v2': numpy.array(
28
+ [
29
+ [ 46.2946, 51.6963 ],
30
+ [ 81.5318, 51.5014 ],
31
+ [ 64.0252, 71.7366 ],
32
+ [ 49.5493, 92.3655 ],
33
+ [ 78.7299, 92.2041 ]
34
+ ]),
35
+ 'ffhq_512': numpy.array(
36
+ [
37
+ [ 192.98138, 239.94708 ],
38
+ [ 318.90277, 240.1936 ],
39
+ [ 256.63416, 314.01935 ],
40
+ [ 201.26117, 371.41043 ],
41
+ [ 313.08905, 371.15118 ]
42
+ ])
43
+ }
44
+
45
+
46
+ def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]:
47
+ normed_template = TEMPLATES.get(template) * size[1] / size[0]
48
+ affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
49
+ crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE)
50
+ return crop_frame, affine_matrix
51
+
52
+
53
+ def paste_back(temp_frame : Frame, crop_frame: Frame, crop_mask : Mask, affine_matrix : Matrix) -> Frame:
54
+ inverse_matrix = cv2.invertAffineTransform(affine_matrix)
55
+ temp_frame_size = temp_frame.shape[:2][::-1]
56
+ inverse_crop_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size).clip(0, 1)
57
+ inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE)
58
+ paste_frame = temp_frame.copy()
59
+ paste_frame[:, :, 0] = inverse_crop_mask * inverse_crop_frame[:, :, 0] + (1 - inverse_crop_mask) * temp_frame[:, :, 0]
60
+ paste_frame[:, :, 1] = inverse_crop_mask * inverse_crop_frame[:, :, 1] + (1 - inverse_crop_mask) * temp_frame[:, :, 1]
61
+ paste_frame[:, :, 2] = inverse_crop_mask * inverse_crop_frame[:, :, 2] + (1 - inverse_crop_mask) * temp_frame[:, :, 2]
62
+ return paste_frame
63
+
64
+
65
+ @lru_cache(maxsize = None)
66
+ def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
67
+ y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
68
+ anchors = numpy.stack((y, x), axis = -1)
69
+ anchors = (anchors * feature_stride).reshape((-1, 2))
70
+ anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
71
+ return anchors
72
+
73
+
74
+ def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox:
75
+ x1 = points[:, 0] - distance[:, 0]
76
+ y1 = points[:, 1] - distance[:, 1]
77
+ x2 = points[:, 0] + distance[:, 2]
78
+ y2 = points[:, 1] + distance[:, 3]
79
+ bbox = numpy.column_stack([ x1, y1, x2, y2 ])
80
+ return bbox
81
+
82
+
83
+ def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps:
84
+ x = points[:, 0::2] + distance[:, 0::2]
85
+ y = points[:, 1::2] + distance[:, 1::2]
86
+ kps = numpy.stack((x, y), axis = -1)
87
+ return kps
88
+
89
+
90
+ def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]:
91
+ keep_indices = []
92
+ dimension_list = numpy.reshape(bbox_list, (-1, 4))
93
+ x1 = dimension_list[:, 0]
94
+ y1 = dimension_list[:, 1]
95
+ x2 = dimension_list[:, 2]
96
+ y2 = dimension_list[:, 3]
97
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
98
+ indices = numpy.arange(len(bbox_list))
99
+ while indices.size > 0:
100
+ index = indices[0]
101
+ remain_indices = indices[1:]
102
+ keep_indices.append(index)
103
+ xx1 = numpy.maximum(x1[index], x1[remain_indices])
104
+ yy1 = numpy.maximum(y1[index], y1[remain_indices])
105
+ xx2 = numpy.minimum(x2[index], x2[remain_indices])
106
+ yy2 = numpy.minimum(y2[index], y2[remain_indices])
107
+ width = numpy.maximum(0, xx2 - xx1 + 1)
108
+ height = numpy.maximum(0, yy2 - yy1 + 1)
109
+ iou = width * height / (areas[index] + areas[remain_indices] - width * height)
110
+ indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
111
+ return keep_indices
facefusion/face_masker.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List
2
+ from cv2.typing import Size
3
+ from functools import lru_cache
4
+ import threading
5
+ import cv2
6
+ import numpy
7
+ import onnxruntime
8
+
9
+ import facefusion.globals
10
+ from facefusion.typing import Frame, Mask, Padding, FaceMaskRegion, ModelSet
11
+ from facefusion.filesystem import resolve_relative_path
12
+ from facefusion.download import conditional_download
13
+
14
+ FACE_OCCLUDER = None
15
+ FACE_PARSER = None
16
+ THREAD_LOCK : threading.Lock = threading.Lock()
17
+ MODELS : ModelSet =\
18
+ {
19
+ 'face_occluder':
20
+ {
21
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_occluder.onnx',
22
+ 'path': resolve_relative_path('../.assets/models/face_occluder.onnx')
23
+ },
24
+ 'face_parser':
25
+ {
26
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_parser.onnx',
27
+ 'path': resolve_relative_path('../.assets/models/face_parser.onnx')
28
+ }
29
+ }
30
+ FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
31
+ {
32
+ 'skin': 1,
33
+ 'left-eyebrow': 2,
34
+ 'right-eyebrow': 3,
35
+ 'left-eye': 4,
36
+ 'right-eye': 5,
37
+ 'eye-glasses': 6,
38
+ 'nose': 10,
39
+ 'mouth': 11,
40
+ 'upper-lip': 12,
41
+ 'lower-lip': 13
42
+ }
43
+
44
+
45
+ def get_face_occluder() -> Any:
46
+ global FACE_OCCLUDER
47
+
48
+ with THREAD_LOCK:
49
+ if FACE_OCCLUDER is None:
50
+ model_path = MODELS.get('face_occluder').get('path')
51
+ FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
52
+ return FACE_OCCLUDER
53
+
54
+
55
+ def get_face_parser() -> Any:
56
+ global FACE_PARSER
57
+
58
+ with THREAD_LOCK:
59
+ if FACE_PARSER is None:
60
+ model_path = MODELS.get('face_parser').get('path')
61
+ FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
62
+ return FACE_PARSER
63
+
64
+
65
+ def clear_face_occluder() -> None:
66
+ global FACE_OCCLUDER
67
+
68
+ FACE_OCCLUDER = None
69
+
70
+
71
+ def clear_face_parser() -> None:
72
+ global FACE_PARSER
73
+
74
+ FACE_PARSER = None
75
+
76
+
77
+ def pre_check() -> bool:
78
+ if not facefusion.globals.skip_download:
79
+ download_directory_path = resolve_relative_path('../.assets/models')
80
+ model_urls =\
81
+ [
82
+ MODELS.get('face_occluder').get('url'),
83
+ MODELS.get('face_parser').get('url'),
84
+ ]
85
+ conditional_download(download_directory_path, model_urls)
86
+ return True
87
+
88
+
89
+ @lru_cache(maxsize = None)
90
+ def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
91
+ blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
92
+ blur_area = max(blur_amount // 2, 1)
93
+ box_mask = numpy.ones(crop_size, numpy.float32)
94
+ box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
95
+ box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
96
+ box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
97
+ box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
98
+ if blur_amount > 0:
99
+ box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
100
+ return box_mask
101
+
102
+
103
+ def create_occlusion_mask(crop_frame : Frame) -> Mask:
104
+ face_occluder = get_face_occluder()
105
+ prepare_frame = cv2.resize(crop_frame, face_occluder.get_inputs()[0].shape[1:3][::-1])
106
+ prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32) / 255
107
+ prepare_frame = prepare_frame.transpose(0, 1, 2, 3)
108
+ occlusion_mask = face_occluder.run(None,
109
+ {
110
+ face_occluder.get_inputs()[0].name: prepare_frame
111
+ })[0][0]
112
+ occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
113
+ occlusion_mask = cv2.resize(occlusion_mask, crop_frame.shape[:2][::-1])
114
+ return occlusion_mask
115
+
116
+
117
+ def create_region_mask(crop_frame : Frame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
118
+ face_parser = get_face_parser()
119
+ prepare_frame = cv2.flip(cv2.resize(crop_frame, (512, 512)), 1)
120
+ prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1
121
+ prepare_frame = prepare_frame.transpose(0, 3, 1, 2)
122
+ region_mask = face_parser.run(None,
123
+ {
124
+ face_parser.get_inputs()[0].name: prepare_frame
125
+ })[0][0]
126
+ region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
127
+ region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_frame.shape[:2][::-1])
128
+ return region_mask
facefusion/face_store.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, List
2
+ import hashlib
3
+
4
+ from facefusion.typing import Frame, Face, FaceStore, FaceSet
5
+
6
+ FACE_STORE: FaceStore =\
7
+ {
8
+ 'static_faces': {},
9
+ 'reference_faces': {}
10
+ }
11
+
12
+
13
+ def get_static_faces(frame : Frame) -> Optional[List[Face]]:
14
+ frame_hash = create_frame_hash(frame)
15
+ if frame_hash in FACE_STORE['static_faces']:
16
+ return FACE_STORE['static_faces'][frame_hash]
17
+ return None
18
+
19
+
20
+ def set_static_faces(frame : Frame, faces : List[Face]) -> None:
21
+ frame_hash = create_frame_hash(frame)
22
+ if frame_hash:
23
+ FACE_STORE['static_faces'][frame_hash] = faces
24
+
25
+
26
+ def clear_static_faces() -> None:
27
+ FACE_STORE['static_faces'] = {}
28
+
29
+
30
+ def create_frame_hash(frame: Frame) -> Optional[str]:
31
+ return hashlib.sha1(frame.tobytes()).hexdigest() if frame.any() else None
32
+
33
+
34
+ def get_reference_faces() -> Optional[FaceSet]:
35
+ if FACE_STORE['reference_faces']:
36
+ return FACE_STORE['reference_faces']
37
+ return None
38
+
39
+
40
+ def append_reference_face(name : str, face : Face) -> None:
41
+ if name not in FACE_STORE['reference_faces']:
42
+ FACE_STORE['reference_faces'][name] = []
43
+ FACE_STORE['reference_faces'][name].append(face)
44
+
45
+
46
+ def clear_reference_faces() -> None:
47
+ FACE_STORE['reference_faces'] = {}
facefusion/ffmpeg.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ import subprocess
3
+
4
+ import facefusion.globals
5
+ from facefusion import logger
6
+ from facefusion.filesystem import get_temp_frames_pattern, get_temp_output_video_path
7
+ from facefusion.vision import detect_fps
8
+
9
+
10
+ def run_ffmpeg(args : List[str]) -> bool:
11
+ commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
12
+ commands.extend(args)
13
+ try:
14
+ subprocess.run(commands, stderr = subprocess.PIPE, check = True)
15
+ return True
16
+ except subprocess.CalledProcessError as exception:
17
+ logger.debug(exception.stderr.decode().strip(), __name__.upper())
18
+ return False
19
+
20
+
21
+ def open_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
22
+ commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
23
+ commands.extend(args)
24
+ return subprocess.Popen(commands, stdin = subprocess.PIPE)
25
+
26
+
27
+ def extract_frames(target_path : str, fps : float) -> bool:
28
+ temp_frame_compression = round(31 - (facefusion.globals.temp_frame_quality * 0.31))
29
+ trim_frame_start = facefusion.globals.trim_frame_start
30
+ trim_frame_end = facefusion.globals.trim_frame_end
31
+ temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
32
+ commands = [ '-hwaccel', 'auto', '-i', target_path, '-q:v', str(temp_frame_compression), '-pix_fmt', 'rgb24' ]
33
+ if trim_frame_start is not None and trim_frame_end is not None:
34
+ commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
35
+ elif trim_frame_start is not None:
36
+ commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ',fps=' + str(fps) ])
37
+ elif trim_frame_end is not None:
38
+ commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
39
+ else:
40
+ commands.extend([ '-vf', 'fps=' + str(fps) ])
41
+ commands.extend([ '-vsync', '0', temp_frames_pattern ])
42
+ return run_ffmpeg(commands)
43
+
44
+
45
+ def compress_image(output_path : str) -> bool:
46
+ output_image_compression = round(31 - (facefusion.globals.output_image_quality * 0.31))
47
+ commands = [ '-hwaccel', 'auto', '-i', output_path, '-q:v', str(output_image_compression), '-y', output_path ]
48
+ return run_ffmpeg(commands)
49
+
50
+
51
+ def merge_video(target_path : str, fps : float) -> bool:
52
+ temp_output_video_path = get_temp_output_video_path(target_path)
53
+ temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
54
+ commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', temp_frames_pattern, '-c:v', facefusion.globals.output_video_encoder ]
55
+ if facefusion.globals.output_video_encoder in [ 'libx264', 'libx265' ]:
56
+ output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.51))
57
+ commands.extend([ '-crf', str(output_video_compression) ])
58
+ if facefusion.globals.output_video_encoder in [ 'libvpx-vp9' ]:
59
+ output_video_compression = round(63 - (facefusion.globals.output_video_quality * 0.63))
60
+ commands.extend([ '-crf', str(output_video_compression) ])
61
+ if facefusion.globals.output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
62
+ output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.51))
63
+ commands.extend([ '-cq', str(output_video_compression) ])
64
+ commands.extend([ '-pix_fmt', 'yuv420p', '-colorspace', 'bt709', '-y', temp_output_video_path ])
65
+ return run_ffmpeg(commands)
66
+
67
+
68
+ def restore_audio(target_path : str, output_path : str) -> bool:
69
+ fps = detect_fps(target_path)
70
+ trim_frame_start = facefusion.globals.trim_frame_start
71
+ trim_frame_end = facefusion.globals.trim_frame_end
72
+ temp_output_video_path = get_temp_output_video_path(target_path)
73
+ commands = [ '-hwaccel', 'auto', '-i', temp_output_video_path ]
74
+ if trim_frame_start is not None:
75
+ start_time = trim_frame_start / fps
76
+ commands.extend([ '-ss', str(start_time) ])
77
+ if trim_frame_end is not None:
78
+ end_time = trim_frame_end / fps
79
+ commands.extend([ '-to', str(end_time) ])
80
+ commands.extend([ '-i', target_path, '-c', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', output_path ])
81
+ return run_ffmpeg(commands)
facefusion/filesystem.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+ import glob
3
+ import os
4
+ import shutil
5
+ import tempfile
6
+ import filetype
7
+ from pathlib import Path
8
+
9
+ import facefusion.globals
10
+
11
+ TEMP_DIRECTORY_PATH = os.path.join(tempfile.gettempdir(), 'facefusion')
12
+ TEMP_OUTPUT_VIDEO_NAME = 'temp.mp4'
13
+
14
+
15
+ def get_temp_frame_paths(target_path : str) -> List[str]:
16
+ temp_frames_pattern = get_temp_frames_pattern(target_path, '*')
17
+ return sorted(glob.glob(temp_frames_pattern))
18
+
19
+
20
+ def get_temp_frames_pattern(target_path : str, temp_frame_prefix : str) -> str:
21
+ temp_directory_path = get_temp_directory_path(target_path)
22
+ return os.path.join(temp_directory_path, temp_frame_prefix + '.' + facefusion.globals.temp_frame_format)
23
+
24
+
25
+ def get_temp_directory_path(target_path : str) -> str:
26
+ target_name, _ = os.path.splitext(os.path.basename(target_path))
27
+ return os.path.join(TEMP_DIRECTORY_PATH, target_name)
28
+
29
+
30
+ def get_temp_output_video_path(target_path : str) -> str:
31
+ temp_directory_path = get_temp_directory_path(target_path)
32
+ return os.path.join(temp_directory_path, TEMP_OUTPUT_VIDEO_NAME)
33
+
34
+
35
+ def create_temp(target_path : str) -> None:
36
+ temp_directory_path = get_temp_directory_path(target_path)
37
+ Path(temp_directory_path).mkdir(parents = True, exist_ok = True)
38
+
39
+
40
+ def move_temp(target_path : str, output_path : str) -> None:
41
+ temp_output_video_path = get_temp_output_video_path(target_path)
42
+ if is_file(temp_output_video_path):
43
+ if is_file(output_path):
44
+ os.remove(output_path)
45
+ shutil.move(temp_output_video_path, output_path)
46
+
47
+
48
+ def clear_temp(target_path : str) -> None:
49
+ temp_directory_path = get_temp_directory_path(target_path)
50
+ parent_directory_path = os.path.dirname(temp_directory_path)
51
+ if not facefusion.globals.keep_temp and is_directory(temp_directory_path):
52
+ shutil.rmtree(temp_directory_path)
53
+ if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
54
+ os.rmdir(parent_directory_path)
55
+
56
+
57
+ def is_file(file_path : str) -> bool:
58
+ return bool(file_path and os.path.isfile(file_path))
59
+
60
+
61
+ def is_directory(directory_path : str) -> bool:
62
+ return bool(directory_path and os.path.isdir(directory_path))
63
+
64
+
65
+ def is_image(image_path : str) -> bool:
66
+ if is_file(image_path):
67
+ return filetype.helpers.is_image(image_path)
68
+ return False
69
+
70
+
71
+ def are_images(image_paths : List[str]) -> bool:
72
+ if image_paths:
73
+ return all(is_image(image_path) for image_path in image_paths)
74
+ return False
75
+
76
+
77
+ def is_video(video_path : str) -> bool:
78
+ if is_file(video_path):
79
+ return filetype.helpers.is_video(video_path)
80
+ return False
81
+
82
+
83
+ def resolve_relative_path(path : str) -> str:
84
+ return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
85
+
86
+
87
+ def list_module_names(path : str) -> Optional[List[str]]:
88
+ if os.path.exists(path):
89
+ files = os.listdir(path)
90
+ return [ Path(file).stem for file in files if not Path(file).stem.startswith(('.', '__')) ]
91
+ return None
facefusion/globals.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+
3
+ from facefusion.typing import LogLevel, FaceSelectorMode, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceMaskType, FaceMaskRegion, OutputVideoEncoder, FaceDetectorModel, FaceRecognizerModel, TempFrameFormat, Padding
4
+
5
+ # general
6
+ source_paths : Optional[List[str]] = None
7
+ target_path : Optional[str] = None
8
+ output_path : Optional[str] = None
9
+ # misc
10
+ skip_download : Optional[bool] = None
11
+ headless : Optional[bool] = None
12
+ log_level : Optional[LogLevel] = None
13
+ # execution
14
+ execution_providers : List[str] = []
15
+ execution_thread_count : Optional[int] = None
16
+ execution_queue_count : Optional[int] = None
17
+ max_memory : Optional[int] = None
18
+ # face analyser
19
+ face_analyser_order : Optional[FaceAnalyserOrder] = None
20
+ face_analyser_age : Optional[FaceAnalyserAge] = None
21
+ face_analyser_gender : Optional[FaceAnalyserGender] = None
22
+ face_detector_model : Optional[FaceDetectorModel] = None
23
+ face_detector_size : Optional[str] = None
24
+ face_detector_score : Optional[float] = None
25
+ face_recognizer_model : Optional[FaceRecognizerModel] = None
26
+ # face selector
27
+ face_selector_mode : Optional[FaceSelectorMode] = None
28
+ reference_face_position : Optional[int] = None
29
+ reference_face_distance : Optional[float] = None
30
+ reference_frame_number : Optional[int] = None
31
+ # face mask
32
+ face_mask_types : Optional[List[FaceMaskType]] = None
33
+ face_mask_blur : Optional[float] = None
34
+ face_mask_padding : Optional[Padding] = None
35
+ face_mask_regions : Optional[List[FaceMaskRegion]] = None
36
+ # frame extraction
37
+ trim_frame_start : Optional[int] = None
38
+ trim_frame_end : Optional[int] = None
39
+ temp_frame_format : Optional[TempFrameFormat] = None
40
+ temp_frame_quality : Optional[int] = None
41
+ keep_temp : Optional[bool] = None
42
+ # output creation
43
+ output_image_quality : Optional[int] = None
44
+ output_video_encoder : Optional[OutputVideoEncoder] = None
45
+ output_video_quality : Optional[int] = None
46
+ keep_fps : Optional[bool] = None
47
+ skip_audio : Optional[bool] = None
48
+ # frame processors
49
+ frame_processors : List[str] = []
50
+ # uis
51
+ ui_layouts : List[str] = []
facefusion/installer.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Tuple
2
+ import sys
3
+ import os
4
+ import platform
5
+ import tempfile
6
+ import subprocess
7
+ from argparse import ArgumentParser, HelpFormatter
8
+
9
+ subprocess.call([ 'pip', 'install' , 'inquirer', '-q' ])
10
+
11
+ import inquirer
12
+
13
+ from facefusion import metadata, wording
14
+
15
+ TORCH : Dict[str, str] =\
16
+ {
17
+ 'default': 'default',
18
+ 'cpu': 'cpu'
19
+ }
20
+ ONNXRUNTIMES : Dict[str, Tuple[str, str]] =\
21
+ {
22
+ 'default': ('onnxruntime', '1.16.3')
23
+ }
24
+ if platform.system().lower() == 'linux' or platform.system().lower() == 'windows':
25
+ TORCH['cuda'] = 'cu118'
26
+ TORCH['cuda-nightly'] = 'cu121'
27
+ ONNXRUNTIMES['cuda'] = ('onnxruntime-gpu', '1.16.3')
28
+ ONNXRUNTIMES['cuda-nightly'] = ('ort-nightly-gpu', '1.17.0.dev20231205004')
29
+ ONNXRUNTIMES['openvino'] = ('onnxruntime-openvino', '1.16.0')
30
+ if platform.system().lower() == 'linux':
31
+ TORCH['rocm'] = 'rocm5.6'
32
+ ONNXRUNTIMES['rocm'] = ('onnxruntime-rocm', '1.16.3')
33
+ if platform.system().lower() == 'darwin':
34
+ ONNXRUNTIMES['coreml-legacy'] = ('onnxruntime-coreml', '1.13.1')
35
+ ONNXRUNTIMES['coreml-silicon'] = ('onnxruntime-silicon', '1.16.0')
36
+ if platform.system().lower() == 'windows':
37
+ ONNXRUNTIMES['directml'] = ('onnxruntime-directml', '1.16.3')
38
+
39
+
40
+ def cli() -> None:
41
+ program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 120))
42
+ program.add_argument('--torch', help = wording.get('install_dependency_help').format(dependency = 'torch'), choices = TORCH.keys())
43
+ program.add_argument('--onnxruntime', help = wording.get('install_dependency_help').format(dependency = 'onnxruntime'), choices = ONNXRUNTIMES.keys())
44
+ program.add_argument('--skip-venv', help = wording.get('skip_venv_help'), action = 'store_true')
45
+ program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
46
+ run(program)
47
+
48
+
49
+ def run(program : ArgumentParser) -> None:
50
+ args = program.parse_args()
51
+ python_id = 'cp' + str(sys.version_info.major) + str(sys.version_info.minor)
52
+
53
+ if not args.skip_venv:
54
+ os.environ['PIP_REQUIRE_VIRTUALENV'] = '1'
55
+ if args.torch and args.onnxruntime:
56
+ answers =\
57
+ {
58
+ 'torch': args.torch,
59
+ 'onnxruntime': args.onnxruntime
60
+ }
61
+ else:
62
+ answers = inquirer.prompt(
63
+ [
64
+ inquirer.List('torch', message = wording.get('install_dependency_help').format(dependency = 'torch'), choices = list(TORCH.keys())),
65
+ inquirer.List('onnxruntime', message = wording.get('install_dependency_help').format(dependency = 'onnxruntime'), choices = list(ONNXRUNTIMES.keys()))
66
+ ])
67
+ if answers:
68
+ torch = answers['torch']
69
+ torch_wheel = TORCH[torch]
70
+ onnxruntime = answers['onnxruntime']
71
+ onnxruntime_name, onnxruntime_version = ONNXRUNTIMES[onnxruntime]
72
+
73
+ subprocess.call([ 'pip', 'uninstall', 'torch', '-y', '-q' ])
74
+ if torch_wheel == 'default':
75
+ subprocess.call([ 'pip', 'install', '-r', 'requirements.txt' ])
76
+ else:
77
+ subprocess.call([ 'pip', 'install', '-r', 'requirements.txt', '--extra-index-url', 'https://download.pytorch.org/whl/' + torch_wheel ])
78
+ if onnxruntime == 'rocm':
79
+ if python_id in [ 'cp39', 'cp310', 'cp311' ]:
80
+ wheel_name = 'onnxruntime_training-' + onnxruntime_version + '+rocm56-' + python_id + '-' + python_id + '-manylinux_2_17_x86_64.manylinux2014_x86_64.whl'
81
+ wheel_path = os.path.join(tempfile.gettempdir(), wheel_name)
82
+ wheel_url = 'https://download.onnxruntime.ai/' + wheel_name
83
+ subprocess.call([ 'curl', '--silent', '--location', '--continue-at', '-', '--output', wheel_path, wheel_url ])
84
+ subprocess.call([ 'pip', 'uninstall', wheel_path, '-y', '-q' ])
85
+ subprocess.call([ 'pip', 'install', wheel_path ])
86
+ os.remove(wheel_path)
87
+ else:
88
+ subprocess.call([ 'pip', 'uninstall', 'onnxruntime', onnxruntime_name, '-y', '-q' ])
89
+ if onnxruntime == 'cuda-nightly':
90
+ subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version, '--extra-index-url', 'https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple' ])
91
+ else:
92
+ subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version ])
facefusion/logger.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+ from logging import basicConfig, getLogger, Logger, DEBUG, INFO, WARNING, ERROR
3
+
4
+ from facefusion.typing import LogLevel
5
+
6
+
7
+ def init(log_level : LogLevel) -> None:
8
+ basicConfig(format = None)
9
+ get_package_logger().setLevel(get_log_levels()[log_level])
10
+
11
+
12
+ def get_package_logger() -> Logger:
13
+ return getLogger('facefusion')
14
+
15
+
16
+ def debug(message : str, scope : str) -> None:
17
+ get_package_logger().debug('[' + scope + '] ' + message)
18
+
19
+
20
+ def info(message : str, scope : str) -> None:
21
+ get_package_logger().info('[' + scope + '] ' + message)
22
+
23
+
24
+ def warn(message : str, scope : str) -> None:
25
+ get_package_logger().warning('[' + scope + '] ' + message)
26
+
27
+
28
+ def error(message : str, scope : str) -> None:
29
+ get_package_logger().error('[' + scope + '] ' + message)
30
+
31
+
32
+ def get_log_levels() -> Dict[LogLevel, int]:
33
+ return\
34
+ {
35
+ 'error': ERROR,
36
+ 'warn': WARNING,
37
+ 'info': INFO,
38
+ 'debug': DEBUG
39
+ }
facefusion/metadata.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ METADATA =\
2
+ {
3
+ 'name': 'FaceFusion',
4
+ 'description': 'Next generation face swapper and enhancer',
5
+ 'version': '2.1.3',
6
+ 'license': 'MIT',
7
+ 'author': 'Henry Ruhs',
8
+ 'url': 'https://facefusion.io'
9
+ }
10
+
11
+
12
+ def get(key : str) -> str:
13
+ return METADATA[key]
facefusion/normalizer.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+ import os
3
+
4
+ from facefusion.filesystem import is_file, is_directory
5
+ from facefusion.typing import Padding
6
+
7
+
8
+ def normalize_output_path(source_paths : List[str], target_path : str, output_path : str) -> Optional[str]:
9
+ if is_file(target_path) and is_directory(output_path):
10
+ target_name, target_extension = os.path.splitext(os.path.basename(target_path))
11
+ if source_paths and is_file(source_paths[0]):
12
+ source_name, _ = os.path.splitext(os.path.basename(source_paths[0]))
13
+ return os.path.join(output_path, source_name + '-' + target_name + target_extension)
14
+ return os.path.join(output_path, target_name + target_extension)
15
+ if is_file(target_path) and output_path:
16
+ _, target_extension = os.path.splitext(os.path.basename(target_path))
17
+ output_name, output_extension = os.path.splitext(os.path.basename(output_path))
18
+ output_directory_path = os.path.dirname(output_path)
19
+ if is_directory(output_directory_path) and output_extension:
20
+ return os.path.join(output_directory_path, output_name + target_extension)
21
+ return None
22
+ return output_path
23
+
24
+
25
+ def normalize_padding(padding : Optional[List[int]]) -> Optional[Padding]:
26
+ if padding and len(padding) == 1:
27
+ return tuple([ padding[0], padding[0], padding[0], padding[0] ]) # type: ignore[return-value]
28
+ if padding and len(padding) == 2:
29
+ return tuple([ padding[0], padding[1], padding[0], padding[1] ]) # type: ignore[return-value]
30
+ if padding and len(padding) == 3:
31
+ return tuple([ padding[0], padding[1], padding[2], padding[1] ]) # type: ignore[return-value]
32
+ if padding and len(padding) == 4:
33
+ return tuple(padding) # type: ignore[return-value]
34
+ return None
facefusion/processors/__init__.py ADDED
File without changes
facefusion/processors/frame/__init__.py ADDED
File without changes
facefusion/processors/frame/choices.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ import numpy
3
+
4
+ from facefusion.processors.frame.typings import FaceSwapperModel, FaceEnhancerModel, FrameEnhancerModel, FaceDebuggerItem
5
+
6
+ face_swapper_models : List[FaceSwapperModel] = [ 'blendswap_256', 'inswapper_128', 'inswapper_128_fp16', 'simswap_256', 'simswap_512_unofficial' ]
7
+ face_enhancer_models : List[FaceEnhancerModel] = [ 'codeformer', 'gfpgan_1.2', 'gfpgan_1.3', 'gfpgan_1.4', 'gpen_bfr_256', 'gpen_bfr_512', 'restoreformer' ]
8
+ frame_enhancer_models : List[FrameEnhancerModel] = [ 'real_esrgan_x2plus', 'real_esrgan_x4plus', 'real_esrnet_x4plus' ]
9
+
10
+ face_enhancer_blend_range : List[int] = numpy.arange(0, 101, 1).tolist()
11
+ frame_enhancer_blend_range : List[int] = numpy.arange(0, 101, 1).tolist()
12
+
13
+ face_debugger_items : List[FaceDebuggerItem] = [ 'bbox', 'kps', 'face-mask', 'score' ]
facefusion/processors/frame/core.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import importlib
3
+ from concurrent.futures import ThreadPoolExecutor, as_completed
4
+ from queue import Queue
5
+ from types import ModuleType
6
+ from typing import Any, List
7
+ from tqdm import tqdm
8
+
9
+ import facefusion.globals
10
+ from facefusion.typing import Process_Frames
11
+ from facefusion.execution_helper import encode_execution_providers
12
+ from facefusion import logger, wording
13
+
14
+ FRAME_PROCESSORS_MODULES : List[ModuleType] = []
15
+ FRAME_PROCESSORS_METHODS =\
16
+ [
17
+ 'get_frame_processor',
18
+ 'clear_frame_processor',
19
+ 'get_options',
20
+ 'set_options',
21
+ 'register_args',
22
+ 'apply_args',
23
+ 'pre_check',
24
+ 'pre_process',
25
+ 'get_reference_frame',
26
+ 'process_frame',
27
+ 'process_frames',
28
+ 'process_image',
29
+ 'process_video',
30
+ 'post_process'
31
+ ]
32
+
33
+
34
+ def load_frame_processor_module(frame_processor : str) -> Any:
35
+ try:
36
+ frame_processor_module = importlib.import_module('facefusion.processors.frame.modules.' + frame_processor)
37
+ for method_name in FRAME_PROCESSORS_METHODS:
38
+ if not hasattr(frame_processor_module, method_name):
39
+ raise NotImplementedError
40
+ except ModuleNotFoundError as exception:
41
+ logger.debug(exception.msg, __name__.upper())
42
+ sys.exit(wording.get('frame_processor_not_loaded').format(frame_processor = frame_processor))
43
+ except NotImplementedError:
44
+ sys.exit(wording.get('frame_processor_not_implemented').format(frame_processor = frame_processor))
45
+ return frame_processor_module
46
+
47
+
48
+ def get_frame_processors_modules(frame_processors : List[str]) -> List[ModuleType]:
49
+ global FRAME_PROCESSORS_MODULES
50
+
51
+ if not FRAME_PROCESSORS_MODULES:
52
+ for frame_processor in frame_processors:
53
+ frame_processor_module = load_frame_processor_module(frame_processor)
54
+ FRAME_PROCESSORS_MODULES.append(frame_processor_module)
55
+ return FRAME_PROCESSORS_MODULES
56
+
57
+
58
+ def clear_frame_processors_modules() -> None:
59
+ global FRAME_PROCESSORS_MODULES
60
+
61
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
62
+ frame_processor_module.clear_frame_processor()
63
+ FRAME_PROCESSORS_MODULES = []
64
+
65
+
66
+ def multi_process_frames(source_paths : List[str], temp_frame_paths : List[str], process_frames : Process_Frames) -> None:
67
+ with tqdm(total = len(temp_frame_paths), desc = wording.get('processing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
68
+ progress.set_postfix(
69
+ {
70
+ 'execution_providers': encode_execution_providers(facefusion.globals.execution_providers),
71
+ 'execution_thread_count': facefusion.globals.execution_thread_count,
72
+ 'execution_queue_count': facefusion.globals.execution_queue_count
73
+ })
74
+ with ThreadPoolExecutor(max_workers = facefusion.globals.execution_thread_count) as executor:
75
+ futures = []
76
+ queue_temp_frame_paths : Queue[str] = create_queue(temp_frame_paths)
77
+ queue_per_future = max(len(temp_frame_paths) // facefusion.globals.execution_thread_count * facefusion.globals.execution_queue_count, 1)
78
+ while not queue_temp_frame_paths.empty():
79
+ payload_temp_frame_paths = pick_queue(queue_temp_frame_paths, queue_per_future)
80
+ future = executor.submit(process_frames, source_paths, payload_temp_frame_paths, progress.update)
81
+ futures.append(future)
82
+ for future_done in as_completed(futures):
83
+ future_done.result()
84
+
85
+
86
+ def create_queue(temp_frame_paths : List[str]) -> Queue[str]:
87
+ queue : Queue[str] = Queue()
88
+ for frame_path in temp_frame_paths:
89
+ queue.put(frame_path)
90
+ return queue
91
+
92
+
93
+ def pick_queue(queue : Queue[str], queue_per_future : int) -> List[str]:
94
+ queues = []
95
+ for _ in range(queue_per_future):
96
+ if not queue.empty():
97
+ queues.append(queue.get())
98
+ return queues
facefusion/processors/frame/globals.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+
3
+ from facefusion.processors.frame.typings import FaceSwapperModel, FaceEnhancerModel, FrameEnhancerModel, FaceDebuggerItem
4
+
5
+ face_swapper_model : Optional[FaceSwapperModel] = None
6
+ face_enhancer_model : Optional[FaceEnhancerModel] = None
7
+ face_enhancer_blend : Optional[int] = None
8
+ frame_enhancer_model : Optional[FrameEnhancerModel] = None
9
+ frame_enhancer_blend : Optional[int] = None
10
+ face_debugger_items : Optional[List[FaceDebuggerItem]] = None
facefusion/processors/frame/modules/__init__.py ADDED
File without changes
facefusion/processors/frame/modules/face_debugger.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Literal
2
+ from argparse import ArgumentParser
3
+ import cv2
4
+ import numpy
5
+
6
+ import facefusion.globals
7
+ import facefusion.processors.frame.core as frame_processors
8
+ from facefusion import wording
9
+ from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
10
+ from facefusion.face_store import get_reference_faces
11
+ from facefusion.content_analyser import clear_content_analyser
12
+ from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode
13
+ from facefusion.vision import read_image, read_static_image, read_static_images, write_image
14
+ from facefusion.face_helper import warp_face
15
+ from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
16
+ from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
17
+
18
+ NAME = __name__.upper()
19
+
20
+
21
+ def get_frame_processor() -> None:
22
+ pass
23
+
24
+
25
+ def clear_frame_processor() -> None:
26
+ pass
27
+
28
+
29
+ def get_options(key : Literal['model']) -> None:
30
+ pass
31
+
32
+
33
+ def set_options(key : Literal['model'], value : Any) -> None:
34
+ pass
35
+
36
+
37
+ def register_args(program : ArgumentParser) -> None:
38
+ program.add_argument('--face-debugger-items', help = wording.get('face_debugger_items_help').format(choices = ', '.join(frame_processors_choices.face_debugger_items)), default = [ 'kps', 'face-mask' ], choices = frame_processors_choices.face_debugger_items, nargs = '+', metavar = 'FACE_DEBUGGER_ITEMS')
39
+
40
+
41
+ def apply_args(program : ArgumentParser) -> None:
42
+ args = program.parse_args()
43
+ frame_processors_globals.face_debugger_items = args.face_debugger_items
44
+
45
+
46
+ def pre_check() -> bool:
47
+ return True
48
+
49
+
50
+ def pre_process(mode : ProcessMode) -> bool:
51
+ return True
52
+
53
+
54
+ def post_process() -> None:
55
+ clear_frame_processor()
56
+ clear_face_analyser()
57
+ clear_content_analyser()
58
+ clear_face_occluder()
59
+ clear_face_parser()
60
+ read_static_image.cache_clear()
61
+
62
+
63
+ def debug_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
64
+ primary_color = (0, 0, 255)
65
+ secondary_color = (0, 255, 0)
66
+ bounding_box = target_face.bbox.astype(numpy.int32)
67
+ if 'bbox' in frame_processors_globals.face_debugger_items:
68
+ cv2.rectangle(temp_frame, (bounding_box[0], bounding_box[1]), (bounding_box[2], bounding_box[3]), secondary_color, 2)
69
+ if 'face-mask' in frame_processors_globals.face_debugger_items:
70
+ crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, 'arcface_128_v2', (128, 512))
71
+ inverse_matrix = cv2.invertAffineTransform(affine_matrix)
72
+ temp_frame_size = temp_frame.shape[:2][::-1]
73
+ crop_mask_list = []
74
+ if 'box' in facefusion.globals.face_mask_types:
75
+ crop_mask_list.append(create_static_box_mask(crop_frame.shape[:2][::-1], 0, facefusion.globals.face_mask_padding))
76
+ if 'occlusion' in facefusion.globals.face_mask_types:
77
+ crop_mask_list.append(create_occlusion_mask(crop_frame))
78
+ if 'region' in facefusion.globals.face_mask_types:
79
+ crop_mask_list.append(create_region_mask(crop_frame, facefusion.globals.face_mask_regions))
80
+ crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
81
+ crop_mask = (crop_mask * 255).astype(numpy.uint8)
82
+ inverse_mask_frame = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size)
83
+ inverse_mask_frame_edges = cv2.threshold(inverse_mask_frame, 100, 255, cv2.THRESH_BINARY)[1]
84
+ inverse_mask_frame_edges[inverse_mask_frame_edges > 0] = 255
85
+ inverse_mask_contours = cv2.findContours(inverse_mask_frame_edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[0]
86
+ cv2.drawContours(temp_frame, inverse_mask_contours, -1, primary_color, 2)
87
+ if bounding_box[3] - bounding_box[1] > 60 and bounding_box[2] - bounding_box[0] > 60:
88
+ if 'kps' in frame_processors_globals.face_debugger_items:
89
+ kps = target_face.kps.astype(numpy.int32)
90
+ for index in range(kps.shape[0]):
91
+ cv2.circle(temp_frame, (kps[index][0], kps[index][1]), 3, primary_color, -1)
92
+ if 'score' in frame_processors_globals.face_debugger_items:
93
+ score_text = str(round(target_face.score, 2))
94
+ score_position = (bounding_box[0] + 10, bounding_box[1] + 20)
95
+ cv2.putText(temp_frame, score_text, score_position, cv2.FONT_HERSHEY_SIMPLEX, 0.5, secondary_color, 2)
96
+ return temp_frame
97
+
98
+
99
+ def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
100
+ pass
101
+
102
+
103
+ def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
104
+ if 'reference' in facefusion.globals.face_selector_mode:
105
+ similar_faces = find_similar_faces(temp_frame, reference_faces, facefusion.globals.reference_face_distance)
106
+ if similar_faces:
107
+ for similar_face in similar_faces:
108
+ temp_frame = debug_face(source_face, similar_face, temp_frame)
109
+ if 'one' in facefusion.globals.face_selector_mode:
110
+ target_face = get_one_face(temp_frame)
111
+ if target_face:
112
+ temp_frame = debug_face(source_face, target_face, temp_frame)
113
+ if 'many' in facefusion.globals.face_selector_mode:
114
+ many_faces = get_many_faces(temp_frame)
115
+ if many_faces:
116
+ for target_face in many_faces:
117
+ temp_frame = debug_face(source_face, target_face, temp_frame)
118
+ return temp_frame
119
+
120
+
121
+ def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
122
+ source_frames = read_static_images(source_paths)
123
+ source_face = get_average_face(source_frames)
124
+ reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
125
+ for temp_frame_path in temp_frame_paths:
126
+ temp_frame = read_image(temp_frame_path)
127
+ result_frame = process_frame(source_face, reference_faces, temp_frame)
128
+ write_image(temp_frame_path, result_frame)
129
+ update_progress()
130
+
131
+
132
+ def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
133
+ source_frames = read_static_images(source_paths)
134
+ source_face = get_average_face(source_frames)
135
+ target_frame = read_static_image(target_path)
136
+ reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
137
+ result_frame = process_frame(source_face, reference_faces, target_frame)
138
+ write_image(output_path, result_frame)
139
+
140
+
141
+ def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
142
+ frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
facefusion/processors/frame/modules/face_enhancer.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Literal, Optional
2
+ from argparse import ArgumentParser
3
+ import cv2
4
+ import threading
5
+ import numpy
6
+ import onnxruntime
7
+
8
+ import facefusion.globals
9
+ import facefusion.processors.frame.core as frame_processors
10
+ from facefusion import logger, wording
11
+ from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
12
+ from facefusion.face_helper import warp_face, paste_back
13
+ from facefusion.content_analyser import clear_content_analyser
14
+ from facefusion.face_store import get_reference_faces
15
+ from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel
16
+ from facefusion.common_helper import create_metavar
17
+ from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
18
+ from facefusion.download import conditional_download, is_download_done
19
+ from facefusion.vision import read_image, read_static_image, write_image
20
+ from facefusion.processors.frame import globals as frame_processors_globals
21
+ from facefusion.processors.frame import choices as frame_processors_choices
22
+ from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
23
+
24
+ FRAME_PROCESSOR = None
25
+ THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
26
+ THREAD_LOCK : threading.Lock = threading.Lock()
27
+ NAME = __name__.upper()
28
+ MODELS : ModelSet =\
29
+ {
30
+ 'codeformer':
31
+ {
32
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx',
33
+ 'path': resolve_relative_path('../.assets/models/codeformer.onnx'),
34
+ 'template': 'ffhq_512',
35
+ 'size': (512, 512)
36
+ },
37
+ 'gfpgan_1.2':
38
+ {
39
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx',
40
+ 'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'),
41
+ 'template': 'ffhq_512',
42
+ 'size': (512, 512)
43
+ },
44
+ 'gfpgan_1.3':
45
+ {
46
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx',
47
+ 'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'),
48
+ 'template': 'ffhq_512',
49
+ 'size': (512, 512)
50
+ },
51
+ 'gfpgan_1.4':
52
+ {
53
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx',
54
+ 'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'),
55
+ 'template': 'ffhq_512',
56
+ 'size': (512, 512)
57
+ },
58
+ 'gpen_bfr_256':
59
+ {
60
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx',
61
+ 'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'),
62
+ 'template': 'arcface_128_v2',
63
+ 'size': (128, 256)
64
+ },
65
+ 'gpen_bfr_512':
66
+ {
67
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx',
68
+ 'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'),
69
+ 'template': 'ffhq_512',
70
+ 'size': (512, 512)
71
+ },
72
+ 'restoreformer':
73
+ {
74
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer.onnx',
75
+ 'path': resolve_relative_path('../.assets/models/restoreformer.onnx'),
76
+ 'template': 'ffhq_512',
77
+ 'size': (512, 512)
78
+ }
79
+ }
80
+ OPTIONS : Optional[OptionsWithModel] = None
81
+
82
+
83
+ def get_frame_processor() -> Any:
84
+ global FRAME_PROCESSOR
85
+
86
+ with THREAD_LOCK:
87
+ if FRAME_PROCESSOR is None:
88
+ model_path = get_options('model').get('path')
89
+ FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
90
+ return FRAME_PROCESSOR
91
+
92
+
93
+ def clear_frame_processor() -> None:
94
+ global FRAME_PROCESSOR
95
+
96
+ FRAME_PROCESSOR = None
97
+
98
+
99
+ def get_options(key : Literal['model']) -> Any:
100
+ global OPTIONS
101
+
102
+ if OPTIONS is None:
103
+ OPTIONS =\
104
+ {
105
+ 'model': MODELS[frame_processors_globals.face_enhancer_model]
106
+ }
107
+ return OPTIONS.get(key)
108
+
109
+
110
+ def set_options(key : Literal['model'], value : Any) -> None:
111
+ global OPTIONS
112
+
113
+ OPTIONS[key] = value
114
+
115
+
116
+ def register_args(program : ArgumentParser) -> None:
117
+ program.add_argument('--face-enhancer-model', help = wording.get('frame_processor_model_help'), default = 'gfpgan_1.4', choices = frame_processors_choices.face_enhancer_models)
118
+ program.add_argument('--face-enhancer-blend', help = wording.get('frame_processor_blend_help'), type = int, default = 80, choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range))
119
+
120
+
121
+ def apply_args(program : ArgumentParser) -> None:
122
+ args = program.parse_args()
123
+ frame_processors_globals.face_enhancer_model = args.face_enhancer_model
124
+ frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend
125
+
126
+
127
+ def pre_check() -> bool:
128
+ if not facefusion.globals.skip_download:
129
+ download_directory_path = resolve_relative_path('../.assets/models')
130
+ model_url = get_options('model').get('url')
131
+ conditional_download(download_directory_path, [ model_url ])
132
+ return True
133
+
134
+
135
+ def pre_process(mode : ProcessMode) -> bool:
136
+ model_url = get_options('model').get('url')
137
+ model_path = get_options('model').get('path')
138
+ if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
139
+ logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
140
+ return False
141
+ elif not is_file(model_path):
142
+ logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
143
+ return False
144
+ if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
145
+ logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
146
+ return False
147
+ if mode == 'output' and not facefusion.globals.output_path:
148
+ logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
149
+ return False
150
+ return True
151
+
152
+
153
+ def post_process() -> None:
154
+ clear_frame_processor()
155
+ clear_face_analyser()
156
+ clear_content_analyser()
157
+ clear_face_occluder()
158
+ read_static_image.cache_clear()
159
+
160
+
161
+ def enhance_face(target_face: Face, temp_frame: Frame) -> Frame:
162
+ frame_processor = get_frame_processor()
163
+ model_template = get_options('model').get('template')
164
+ model_size = get_options('model').get('size')
165
+ crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size)
166
+ crop_mask_list =\
167
+ [
168
+ create_static_box_mask(crop_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0))
169
+ ]
170
+ if 'occlusion' in facefusion.globals.face_mask_types:
171
+ crop_mask_list.append(create_occlusion_mask(crop_frame))
172
+ crop_frame = prepare_crop_frame(crop_frame)
173
+ frame_processor_inputs = {}
174
+ for frame_processor_input in frame_processor.get_inputs():
175
+ if frame_processor_input.name == 'input':
176
+ frame_processor_inputs[frame_processor_input.name] = crop_frame
177
+ if frame_processor_input.name == 'weight':
178
+ frame_processor_inputs[frame_processor_input.name] = numpy.array([ 1 ], dtype = numpy.double)
179
+ with THREAD_SEMAPHORE:
180
+ crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
181
+ crop_frame = normalize_crop_frame(crop_frame)
182
+ crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
183
+ paste_frame = paste_back(temp_frame, crop_frame, crop_mask, affine_matrix)
184
+ temp_frame = blend_frame(temp_frame, paste_frame)
185
+ return temp_frame
186
+
187
+
188
+ def prepare_crop_frame(crop_frame : Frame) -> Frame:
189
+ crop_frame = crop_frame[:, :, ::-1] / 255.0
190
+ crop_frame = (crop_frame - 0.5) / 0.5
191
+ crop_frame = numpy.expand_dims(crop_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
192
+ return crop_frame
193
+
194
+
195
+ def normalize_crop_frame(crop_frame : Frame) -> Frame:
196
+ crop_frame = numpy.clip(crop_frame, -1, 1)
197
+ crop_frame = (crop_frame + 1) / 2
198
+ crop_frame = crop_frame.transpose(1, 2, 0)
199
+ crop_frame = (crop_frame * 255.0).round()
200
+ crop_frame = crop_frame.astype(numpy.uint8)[:, :, ::-1]
201
+ return crop_frame
202
+
203
+
204
+ def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame:
205
+ face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100)
206
+ temp_frame = cv2.addWeighted(temp_frame, face_enhancer_blend, paste_frame, 1 - face_enhancer_blend, 0)
207
+ return temp_frame
208
+
209
+
210
+ def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Optional[Frame]:
211
+ return enhance_face(target_face, temp_frame)
212
+
213
+
214
+ def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
215
+ if 'reference' in facefusion.globals.face_selector_mode:
216
+ similar_faces = find_similar_faces(temp_frame, reference_faces, facefusion.globals.reference_face_distance)
217
+ if similar_faces:
218
+ for similar_face in similar_faces:
219
+ temp_frame = enhance_face(similar_face, temp_frame)
220
+ if 'one' in facefusion.globals.face_selector_mode:
221
+ target_face = get_one_face(temp_frame)
222
+ if target_face:
223
+ temp_frame = enhance_face(target_face, temp_frame)
224
+ if 'many' in facefusion.globals.face_selector_mode:
225
+ many_faces = get_many_faces(temp_frame)
226
+ if many_faces:
227
+ for target_face in many_faces:
228
+ temp_frame = enhance_face(target_face, temp_frame)
229
+ return temp_frame
230
+
231
+
232
+ def process_frames(source_path : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
233
+ reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
234
+ for temp_frame_path in temp_frame_paths:
235
+ temp_frame = read_image(temp_frame_path)
236
+ result_frame = process_frame(None, reference_faces, temp_frame)
237
+ write_image(temp_frame_path, result_frame)
238
+ update_progress()
239
+
240
+
241
+ def process_image(source_path : str, target_path : str, output_path : str) -> None:
242
+ reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
243
+ target_frame = read_static_image(target_path)
244
+ result_frame = process_frame(None, reference_faces, target_frame)
245
+ write_image(output_path, result_frame)
246
+
247
+
248
+ def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
249
+ frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)
facefusion/processors/frame/modules/face_swapper.py ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Literal, Optional
2
+ from argparse import ArgumentParser
3
+ import threading
4
+ import numpy
5
+ import onnx
6
+ import onnxruntime
7
+ from onnx import numpy_helper
8
+
9
+ import facefusion.globals
10
+ import facefusion.processors.frame.core as frame_processors
11
+ from facefusion import logger, wording
12
+ from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
13
+ from facefusion.face_helper import warp_face, paste_back
14
+ from facefusion.face_store import get_reference_faces
15
+ from facefusion.content_analyser import clear_content_analyser
16
+ from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, Embedding
17
+ from facefusion.filesystem import is_file, is_image, are_images, is_video, resolve_relative_path
18
+ from facefusion.download import conditional_download, is_download_done
19
+ from facefusion.vision import read_image, read_static_image, read_static_images, write_image
20
+ from facefusion.processors.frame import globals as frame_processors_globals
21
+ from facefusion.processors.frame import choices as frame_processors_choices
22
+ from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
23
+
24
+ FRAME_PROCESSOR = None
25
+ MODEL_MATRIX = None
26
+ THREAD_LOCK : threading.Lock = threading.Lock()
27
+ NAME = __name__.upper()
28
+ MODELS : ModelSet =\
29
+ {
30
+ 'blendswap_256':
31
+ {
32
+ 'type': 'blendswap',
33
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/blendswap_256.onnx',
34
+ 'path': resolve_relative_path('../.assets/models/blendswap_256.onnx'),
35
+ 'template': 'ffhq_512',
36
+ 'size': (512, 256),
37
+ 'mean': [ 0.0, 0.0, 0.0 ],
38
+ 'standard_deviation': [ 1.0, 1.0, 1.0 ]
39
+ },
40
+ 'inswapper_128':
41
+ {
42
+ 'type': 'inswapper',
43
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx',
44
+ 'path': resolve_relative_path('../.assets/models/inswapper_128.onnx'),
45
+ 'template': 'arcface_128_v2',
46
+ 'size': (128, 128),
47
+ 'mean': [ 0.0, 0.0, 0.0 ],
48
+ 'standard_deviation': [ 1.0, 1.0, 1.0 ]
49
+ },
50
+ 'inswapper_128_fp16':
51
+ {
52
+ 'type': 'inswapper',
53
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128_fp16.onnx',
54
+ 'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx'),
55
+ 'template': 'arcface_128_v2',
56
+ 'size': (128, 128),
57
+ 'mean': [ 0.0, 0.0, 0.0 ],
58
+ 'standard_deviation': [ 1.0, 1.0, 1.0 ]
59
+ },
60
+ 'simswap_256':
61
+ {
62
+ 'type': 'simswap',
63
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_256.onnx',
64
+ 'path': resolve_relative_path('../.assets/models/simswap_256.onnx'),
65
+ 'template': 'arcface_112_v1',
66
+ 'size': (112, 256),
67
+ 'mean': [ 0.485, 0.456, 0.406 ],
68
+ 'standard_deviation': [ 0.229, 0.224, 0.225 ]
69
+ },
70
+ 'simswap_512_unofficial':
71
+ {
72
+ 'type': 'simswap',
73
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_512_unofficial.onnx',
74
+ 'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx'),
75
+ 'template': 'arcface_112_v1',
76
+ 'size': (112, 512),
77
+ 'mean': [ 0.0, 0.0, 0.0 ],
78
+ 'standard_deviation': [ 1.0, 1.0, 1.0 ]
79
+ }
80
+ }
81
+ OPTIONS : Optional[OptionsWithModel] = None
82
+
83
+
84
+ def get_frame_processor() -> Any:
85
+ global FRAME_PROCESSOR
86
+
87
+ with THREAD_LOCK:
88
+ if FRAME_PROCESSOR is None:
89
+ model_path = get_options('model').get('path')
90
+ FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
91
+ return FRAME_PROCESSOR
92
+
93
+
94
+ def clear_frame_processor() -> None:
95
+ global FRAME_PROCESSOR
96
+
97
+ FRAME_PROCESSOR = None
98
+
99
+
100
+ def get_model_matrix() -> Any:
101
+ global MODEL_MATRIX
102
+
103
+ with THREAD_LOCK:
104
+ if MODEL_MATRIX is None:
105
+ model_path = get_options('model').get('path')
106
+ model = onnx.load(model_path)
107
+ MODEL_MATRIX = numpy_helper.to_array(model.graph.initializer[-1])
108
+ return MODEL_MATRIX
109
+
110
+
111
+ def clear_model_matrix() -> None:
112
+ global MODEL_MATRIX
113
+
114
+ MODEL_MATRIX = None
115
+
116
+
117
+ def get_options(key : Literal['model']) -> Any:
118
+ global OPTIONS
119
+
120
+ if OPTIONS is None:
121
+ OPTIONS =\
122
+ {
123
+ 'model': MODELS[frame_processors_globals.face_swapper_model]
124
+ }
125
+ return OPTIONS.get(key)
126
+
127
+
128
+ def set_options(key : Literal['model'], value : Any) -> None:
129
+ global OPTIONS
130
+
131
+ OPTIONS[key] = value
132
+
133
+
134
+ def register_args(program : ArgumentParser) -> None:
135
+ program.add_argument('--face-swapper-model', help = wording.get('frame_processor_model_help'), default = 'inswapper_128', choices = frame_processors_choices.face_swapper_models)
136
+
137
+
138
+ def apply_args(program : ArgumentParser) -> None:
139
+ args = program.parse_args()
140
+ frame_processors_globals.face_swapper_model = args.face_swapper_model
141
+ if args.face_swapper_model == 'blendswap_256':
142
+ facefusion.globals.face_recognizer_model = 'arcface_blendswap'
143
+ if args.face_swapper_model == 'inswapper_128' or args.face_swapper_model == 'inswapper_128_fp16':
144
+ facefusion.globals.face_recognizer_model = 'arcface_inswapper'
145
+ if args.face_swapper_model == 'simswap_256' or args.face_swapper_model == 'simswap_512_unofficial':
146
+ facefusion.globals.face_recognizer_model = 'arcface_simswap'
147
+
148
+
149
+ def pre_check() -> bool:
150
+ if not facefusion.globals.skip_download:
151
+ download_directory_path = resolve_relative_path('../.assets/models')
152
+ model_url = get_options('model').get('url')
153
+ conditional_download(download_directory_path, [ model_url ])
154
+ return True
155
+
156
+
157
+ def pre_process(mode : ProcessMode) -> bool:
158
+ model_url = get_options('model').get('url')
159
+ model_path = get_options('model').get('path')
160
+ if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
161
+ logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
162
+ return False
163
+ elif not is_file(model_path):
164
+ logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
165
+ return False
166
+ if not are_images(facefusion.globals.source_paths):
167
+ logger.error(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
168
+ return False
169
+ for source_frame in read_static_images(facefusion.globals.source_paths):
170
+ if not get_one_face(source_frame):
171
+ logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
172
+ return False
173
+ if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
174
+ logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
175
+ return False
176
+ if mode == 'output' and not facefusion.globals.output_path:
177
+ logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
178
+ return False
179
+ return True
180
+
181
+
182
+ def post_process() -> None:
183
+ clear_frame_processor()
184
+ clear_model_matrix()
185
+ clear_face_analyser()
186
+ clear_content_analyser()
187
+ clear_face_occluder()
188
+ clear_face_parser()
189
+ read_static_image.cache_clear()
190
+
191
+
192
+ def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
193
+ frame_processor = get_frame_processor()
194
+ model_template = get_options('model').get('template')
195
+ model_size = get_options('model').get('size')
196
+ model_type = get_options('model').get('type')
197
+ crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size)
198
+ crop_mask_list = []
199
+ if 'box' in facefusion.globals.face_mask_types:
200
+ crop_mask_list.append(create_static_box_mask(crop_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding))
201
+ if 'occlusion' in facefusion.globals.face_mask_types:
202
+ crop_mask_list.append(create_occlusion_mask(crop_frame))
203
+ crop_frame = prepare_crop_frame(crop_frame)
204
+ frame_processor_inputs = {}
205
+ for frame_processor_input in frame_processor.get_inputs():
206
+ if frame_processor_input.name == 'source':
207
+ if model_type == 'blendswap':
208
+ frame_processor_inputs[frame_processor_input.name] = prepare_source_frame(source_face)
209
+ else:
210
+ frame_processor_inputs[frame_processor_input.name] = prepare_source_embedding(source_face)
211
+ if frame_processor_input.name == 'target':
212
+ frame_processor_inputs[frame_processor_input.name] = crop_frame
213
+ crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
214
+ crop_frame = normalize_crop_frame(crop_frame)
215
+ if 'region' in facefusion.globals.face_mask_types:
216
+ crop_mask_list.append(create_region_mask(crop_frame, facefusion.globals.face_mask_regions))
217
+ crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
218
+ temp_frame = paste_back(temp_frame, crop_frame, crop_mask, affine_matrix)
219
+ return temp_frame
220
+
221
+
222
+ def prepare_source_frame(source_face : Face) -> Frame:
223
+ source_frame = read_static_image(facefusion.globals.source_paths[0])
224
+ source_frame, _ = warp_face(source_frame, source_face.kps, 'arcface_112_v2', (112, 112))
225
+ source_frame = source_frame[:, :, ::-1] / 255.0
226
+ source_frame = source_frame.transpose(2, 0, 1)
227
+ source_frame = numpy.expand_dims(source_frame, axis = 0).astype(numpy.float32)
228
+ return source_frame
229
+
230
+
231
+ def prepare_source_embedding(source_face : Face) -> Embedding:
232
+ model_type = get_options('model').get('type')
233
+ if model_type == 'inswapper':
234
+ model_matrix = get_model_matrix()
235
+ source_embedding = source_face.embedding.reshape((1, -1))
236
+ source_embedding = numpy.dot(source_embedding, model_matrix) / numpy.linalg.norm(source_embedding)
237
+ else:
238
+ source_embedding = source_face.normed_embedding.reshape(1, -1)
239
+ return source_embedding
240
+
241
+
242
+ def prepare_crop_frame(crop_frame : Frame) -> Frame:
243
+ model_mean = get_options('model').get('mean')
244
+ model_standard_deviation = get_options('model').get('standard_deviation')
245
+ crop_frame = crop_frame[:, :, ::-1] / 255.0
246
+ crop_frame = (crop_frame - model_mean) / model_standard_deviation
247
+ crop_frame = crop_frame.transpose(2, 0, 1)
248
+ crop_frame = numpy.expand_dims(crop_frame, axis = 0).astype(numpy.float32)
249
+ return crop_frame
250
+
251
+
252
+ def normalize_crop_frame(crop_frame : Frame) -> Frame:
253
+ crop_frame = crop_frame.transpose(1, 2, 0)
254
+ crop_frame = (crop_frame * 255.0).round()
255
+ crop_frame = crop_frame[:, :, ::-1].astype(numpy.uint8)
256
+ return crop_frame
257
+
258
+
259
+ def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
260
+ return swap_face(source_face, target_face, temp_frame)
261
+
262
+
263
+ def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
264
+ if 'reference' in facefusion.globals.face_selector_mode:
265
+ similar_faces = find_similar_faces(temp_frame, reference_faces, facefusion.globals.reference_face_distance)
266
+ if similar_faces:
267
+ for similar_face in similar_faces:
268
+ temp_frame = swap_face(source_face, similar_face, temp_frame)
269
+ if 'one' in facefusion.globals.face_selector_mode:
270
+ target_face = get_one_face(temp_frame)
271
+ if target_face:
272
+ temp_frame = swap_face(source_face, target_face, temp_frame)
273
+ if 'many' in facefusion.globals.face_selector_mode:
274
+ many_faces = get_many_faces(temp_frame)
275
+ if many_faces:
276
+ for target_face in many_faces:
277
+ temp_frame = swap_face(source_face, target_face, temp_frame)
278
+ return temp_frame
279
+
280
+
281
+ def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
282
+ source_frames = read_static_images(source_paths)
283
+ source_face = get_average_face(source_frames)
284
+ reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
285
+ for temp_frame_path in temp_frame_paths:
286
+ temp_frame = read_image(temp_frame_path)
287
+ result_frame = process_frame(source_face, reference_faces, temp_frame)
288
+ write_image(temp_frame_path, result_frame)
289
+ update_progress()
290
+
291
+
292
+ def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
293
+ source_frames = read_static_images(source_paths)
294
+ source_face = get_average_face(source_frames)
295
+ reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
296
+ target_frame = read_static_image(target_path)
297
+ result_frame = process_frame(source_face, reference_faces, target_frame)
298
+ write_image(output_path, result_frame)
299
+
300
+
301
+ def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
302
+ frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
facefusion/processors/frame/modules/frame_enhancer.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Literal, Optional
2
+ from argparse import ArgumentParser
3
+ import threading
4
+ import cv2
5
+ from basicsr.archs.rrdbnet_arch import RRDBNet
6
+ from realesrgan import RealESRGANer
7
+
8
+ import facefusion.globals
9
+ import facefusion.processors.frame.core as frame_processors
10
+ from facefusion import logger, wording
11
+ from facefusion.face_analyser import clear_face_analyser
12
+ from facefusion.content_analyser import clear_content_analyser
13
+ from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel
14
+ from facefusion.common_helper import create_metavar
15
+ from facefusion.execution_helper import map_device
16
+ from facefusion.filesystem import is_file, resolve_relative_path
17
+ from facefusion.download import conditional_download, is_download_done
18
+ from facefusion.vision import read_image, read_static_image, write_image
19
+ from facefusion.processors.frame import globals as frame_processors_globals
20
+ from facefusion.processors.frame import choices as frame_processors_choices
21
+
22
+ FRAME_PROCESSOR = None
23
+ THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
24
+ THREAD_LOCK : threading.Lock = threading.Lock()
25
+ NAME = __name__.upper()
26
+ MODELS : ModelSet =\
27
+ {
28
+ 'real_esrgan_x2plus':
29
+ {
30
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x2plus.pth',
31
+ 'path': resolve_relative_path('../.assets/models/real_esrgan_x2plus.pth'),
32
+ 'scale': 2
33
+ },
34
+ 'real_esrgan_x4plus':
35
+ {
36
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x4plus.pth',
37
+ 'path': resolve_relative_path('../.assets/models/real_esrgan_x4plus.pth'),
38
+ 'scale': 4
39
+ },
40
+ 'real_esrnet_x4plus':
41
+ {
42
+ 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrnet_x4plus.pth',
43
+ 'path': resolve_relative_path('../.assets/models/real_esrnet_x4plus.pth'),
44
+ 'scale': 4
45
+ }
46
+ }
47
+ OPTIONS : Optional[OptionsWithModel] = None
48
+
49
+
50
+ def get_frame_processor() -> Any:
51
+ global FRAME_PROCESSOR
52
+
53
+ with THREAD_LOCK:
54
+ if FRAME_PROCESSOR is None:
55
+ model_path = get_options('model').get('path')
56
+ model_scale = get_options('model').get('scale')
57
+ FRAME_PROCESSOR = RealESRGANer(
58
+ model_path = model_path,
59
+ model = RRDBNet(
60
+ num_in_ch = 3,
61
+ num_out_ch = 3,
62
+ scale = model_scale
63
+ ),
64
+ device = map_device(facefusion.globals.execution_providers),
65
+ scale = model_scale
66
+ )
67
+ return FRAME_PROCESSOR
68
+
69
+
70
+ def clear_frame_processor() -> None:
71
+ global FRAME_PROCESSOR
72
+
73
+ FRAME_PROCESSOR = None
74
+
75
+
76
+ def get_options(key : Literal['model']) -> Any:
77
+ global OPTIONS
78
+
79
+ if OPTIONS is None:
80
+ OPTIONS =\
81
+ {
82
+ 'model': MODELS[frame_processors_globals.frame_enhancer_model]
83
+ }
84
+ return OPTIONS.get(key)
85
+
86
+
87
+ def set_options(key : Literal['model'], value : Any) -> None:
88
+ global OPTIONS
89
+
90
+ OPTIONS[key] = value
91
+
92
+
93
+ def register_args(program : ArgumentParser) -> None:
94
+ program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), default = 'real_esrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models)
95
+ program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), type = int, default = 80, choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range))
96
+
97
+
98
+ def apply_args(program : ArgumentParser) -> None:
99
+ args = program.parse_args()
100
+ frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model
101
+ frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend
102
+
103
+
104
+ def pre_check() -> bool:
105
+ if not facefusion.globals.skip_download:
106
+ download_directory_path = resolve_relative_path('../.assets/models')
107
+ model_url = get_options('model').get('url')
108
+ conditional_download(download_directory_path, [ model_url ])
109
+ return True
110
+
111
+
112
+ def pre_process(mode : ProcessMode) -> bool:
113
+ model_url = get_options('model').get('url')
114
+ model_path = get_options('model').get('path')
115
+ if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
116
+ logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
117
+ return False
118
+ elif not is_file(model_path):
119
+ logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
120
+ return False
121
+ if mode == 'output' and not facefusion.globals.output_path:
122
+ logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
123
+ return False
124
+ return True
125
+
126
+
127
+ def post_process() -> None:
128
+ clear_frame_processor()
129
+ clear_face_analyser()
130
+ clear_content_analyser()
131
+ read_static_image.cache_clear()
132
+
133
+
134
+ def enhance_frame(temp_frame : Frame) -> Frame:
135
+ with THREAD_SEMAPHORE:
136
+ paste_frame, _ = get_frame_processor().enhance(temp_frame)
137
+ temp_frame = blend_frame(temp_frame, paste_frame)
138
+ return temp_frame
139
+
140
+
141
+ def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame:
142
+ frame_enhancer_blend = 1 - (frame_processors_globals.frame_enhancer_blend / 100)
143
+ paste_frame_height, paste_frame_width = paste_frame.shape[0:2]
144
+ temp_frame = cv2.resize(temp_frame, (paste_frame_width, paste_frame_height))
145
+ temp_frame = cv2.addWeighted(temp_frame, frame_enhancer_blend, paste_frame, 1 - frame_enhancer_blend, 0)
146
+ return temp_frame
147
+
148
+
149
+ def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
150
+ pass
151
+
152
+
153
+ def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
154
+ return enhance_frame(temp_frame)
155
+
156
+
157
+ def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
158
+ for temp_frame_path in temp_frame_paths:
159
+ temp_frame = read_image(temp_frame_path)
160
+ result_frame = process_frame(None, None, temp_frame)
161
+ write_image(temp_frame_path, result_frame)
162
+ update_progress()
163
+
164
+
165
+ def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
166
+ target_frame = read_static_image(target_path)
167
+ result = process_frame(None, None, target_frame)
168
+ write_image(output_path, result)
169
+
170
+
171
+ def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
172
+ frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)
facefusion/processors/frame/typings.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+
3
+ FaceSwapperModel = Literal['blendswap_256', 'inswapper_128', 'inswapper_128_fp16', 'simswap_256', 'simswap_512_unofficial']
4
+ FaceEnhancerModel = Literal['codeformer', 'gfpgan_1.2', 'gfpgan_1.3', 'gfpgan_1.4', 'gpen_bfr_256', 'gpen_bfr_512', 'restoreformer']
5
+ FrameEnhancerModel = Literal['real_esrgan_x2plus', 'real_esrgan_x4plus', 'real_esrnet_x4plus']
6
+
7
+ FaceDebuggerItem = Literal['bbox', 'kps', 'face-mask', 'score']
facefusion/typing.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Literal, Callable, List, Tuple, Dict, TypedDict
2
+ from collections import namedtuple
3
+ import numpy
4
+
5
+ Bbox = numpy.ndarray[Any, Any]
6
+ Kps = numpy.ndarray[Any, Any]
7
+ Score = float
8
+ Embedding = numpy.ndarray[Any, Any]
9
+ Face = namedtuple('Face',
10
+ [
11
+ 'bbox',
12
+ 'kps',
13
+ 'score',
14
+ 'embedding',
15
+ 'normed_embedding',
16
+ 'gender',
17
+ 'age'
18
+ ])
19
+ FaceSet = Dict[str, List[Face]]
20
+ FaceStore = TypedDict('FaceStore',
21
+ {
22
+ 'static_faces' : FaceSet,
23
+ 'reference_faces': FaceSet
24
+ })
25
+ Frame = numpy.ndarray[Any, Any]
26
+ Mask = numpy.ndarray[Any, Any]
27
+ Matrix = numpy.ndarray[Any, Any]
28
+ Padding = Tuple[int, int, int, int]
29
+
30
+ Update_Process = Callable[[], None]
31
+ Process_Frames = Callable[[List[str], List[str], Update_Process], None]
32
+ LogLevel = Literal['error', 'warn', 'info', 'debug']
33
+ Template = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'ffhq_512']
34
+ ProcessMode = Literal['output', 'preview', 'stream']
35
+ FaceSelectorMode = Literal['reference', 'one', 'many']
36
+ FaceAnalyserOrder = Literal['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best']
37
+ FaceAnalyserAge = Literal['child', 'teen', 'adult', 'senior']
38
+ FaceAnalyserGender = Literal['male', 'female']
39
+ FaceDetectorModel = Literal['retinaface', 'yunet']
40
+ FaceRecognizerModel = Literal['arcface_blendswap', 'arcface_inswapper', 'arcface_simswap']
41
+ FaceMaskType = Literal['box', 'occlusion', 'region']
42
+ FaceMaskRegion = Literal['skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'eye-glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip']
43
+ TempFrameFormat = Literal['jpg', 'png']
44
+ OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc']
45
+
46
+ ModelValue = Dict[str, Any]
47
+ ModelSet = Dict[str, ModelValue]
48
+ OptionsWithModel = TypedDict('OptionsWithModel',
49
+ {
50
+ 'model' : ModelValue
51
+ })
facefusion/uis/__init__.py ADDED
File without changes
facefusion/uis/assets/fixes.css ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ :root:root:root button:not([class])
2
+ {
3
+ border-radius: 0.375rem;
4
+ float: left;
5
+ overflow: hidden;
6
+ width: 100%;
7
+ }
facefusion/uis/assets/overrides.css ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ :root:root:root input[type="number"]
2
+ {
3
+ max-width: 6rem;
4
+ }
5
+
6
+ :root:root:root [type="checkbox"],
7
+ :root:root:root [type="radio"]
8
+ {
9
+ border-radius: 50%;
10
+ height: 1.125rem;
11
+ width: 1.125rem;
12
+ }
13
+
14
+ :root:root:root input[type="range"]
15
+ {
16
+ height: 0.5rem;
17
+ }
18
+
19
+ :root:root:root input[type="range"]::-moz-range-thumb,
20
+ :root:root:root input[type="range"]::-webkit-slider-thumb
21
+ {
22
+ background: var(--neutral-300);
23
+ border: unset;
24
+ border-radius: 50%;
25
+ height: 1.125rem;
26
+ width: 1.125rem;
27
+ }
28
+
29
+ :root:root:root input[type="range"]::-webkit-slider-thumb
30
+ {
31
+ margin-top: 0.375rem;
32
+ }
33
+
34
+ :root:root:root .grid-wrap.fixed-height
35
+ {
36
+ min-height: unset;
37
+ }
38
+
39
+ :root:root:root .grid-container
40
+ {
41
+ grid-auto-rows: minmax(5em, 1fr);
42
+ grid-template-columns: repeat(var(--grid-cols), minmax(5em, 1fr));
43
+ grid-template-rows: repeat(var(--grid-rows), minmax(5em, 1fr));
44
+ }
facefusion/uis/choices.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from facefusion.uis.typing import WebcamMode
4
+
5
+ common_options : List[str] = [ 'keep-fps', 'keep-temp', 'skip-audio', 'skip-download' ]
6
+ webcam_modes : List[WebcamMode] = [ 'inline', 'udp', 'v4l2' ]
7
+ webcam_resolutions : List[str] = [ '320x240', '640x480', '800x600', '1024x768', '1280x720', '1280x960', '1920x1080', '2560x1440', '3840x2160' ]
facefusion/uis/components/__init__.py ADDED
File without changes
facefusion/uis/components/about.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import gradio
3
+
4
+ from facefusion import metadata, wording
5
+
6
+ ABOUT_BUTTON : Optional[gradio.HTML] = None
7
+ DONATE_BUTTON : Optional[gradio.HTML] = None
8
+
9
+
10
+ def render() -> None:
11
+ global ABOUT_BUTTON
12
+ global DONATE_BUTTON
13
+
14
+ ABOUT_BUTTON = gradio.Button(
15
+ value = metadata.get('name') + ' ' + metadata.get('version'),
16
+ variant = 'primary',
17
+ link = metadata.get('url')
18
+ )
19
+ DONATE_BUTTON = gradio.Button(
20
+ value = wording.get('donate_button_label'),
21
+ link = 'https://donate.facefusion.io',
22
+ size = 'sm'
23
+ )
facefusion/uis/components/benchmark.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Optional, List, Dict, Generator
2
+ import time
3
+ import tempfile
4
+ import statistics
5
+ import gradio
6
+
7
+ import facefusion.globals
8
+ from facefusion import wording
9
+ from facefusion.face_analyser import get_face_analyser
10
+ from facefusion.face_store import clear_static_faces
11
+ from facefusion.processors.frame.core import get_frame_processors_modules
12
+ from facefusion.vision import count_video_frame_total
13
+ from facefusion.core import limit_resources, conditional_process
14
+ from facefusion.normalizer import normalize_output_path
15
+ from facefusion.filesystem import clear_temp
16
+ from facefusion.uis.core import get_ui_component
17
+
18
+ BENCHMARK_RESULTS_DATAFRAME : Optional[gradio.Dataframe] = None
19
+ BENCHMARK_START_BUTTON : Optional[gradio.Button] = None
20
+ BENCHMARK_CLEAR_BUTTON : Optional[gradio.Button] = None
21
+ BENCHMARKS : Dict[str, str] =\
22
+ {
23
+ '240p': '.assets/examples/target-240p.mp4',
24
+ '360p': '.assets/examples/target-360p.mp4',
25
+ '540p': '.assets/examples/target-540p.mp4',
26
+ '720p': '.assets/examples/target-720p.mp4',
27
+ '1080p': '.assets/examples/target-1080p.mp4',
28
+ '1440p': '.assets/examples/target-1440p.mp4',
29
+ '2160p': '.assets/examples/target-2160p.mp4'
30
+ }
31
+
32
+
33
+ def render() -> None:
34
+ global BENCHMARK_RESULTS_DATAFRAME
35
+ global BENCHMARK_START_BUTTON
36
+ global BENCHMARK_CLEAR_BUTTON
37
+
38
+ BENCHMARK_RESULTS_DATAFRAME = gradio.Dataframe(
39
+ label = wording.get('benchmark_results_dataframe_label'),
40
+ headers =
41
+ [
42
+ 'target_path',
43
+ 'benchmark_cycles',
44
+ 'average_run',
45
+ 'fastest_run',
46
+ 'slowest_run',
47
+ 'relative_fps'
48
+ ],
49
+ datatype =
50
+ [
51
+ 'str',
52
+ 'number',
53
+ 'number',
54
+ 'number',
55
+ 'number',
56
+ 'number'
57
+ ]
58
+ )
59
+ BENCHMARK_START_BUTTON = gradio.Button(
60
+ value = wording.get('start_button_label'),
61
+ variant = 'primary',
62
+ size = 'sm'
63
+ )
64
+ BENCHMARK_CLEAR_BUTTON = gradio.Button(
65
+ value = wording.get('clear_button_label'),
66
+ size = 'sm'
67
+ )
68
+
69
+
70
+ def listen() -> None:
71
+ benchmark_runs_checkbox_group = get_ui_component('benchmark_runs_checkbox_group')
72
+ benchmark_cycles_slider = get_ui_component('benchmark_cycles_slider')
73
+ if benchmark_runs_checkbox_group and benchmark_cycles_slider:
74
+ BENCHMARK_START_BUTTON.click(start, inputs = [ benchmark_runs_checkbox_group, benchmark_cycles_slider ], outputs = BENCHMARK_RESULTS_DATAFRAME)
75
+ BENCHMARK_CLEAR_BUTTON.click(clear, outputs = BENCHMARK_RESULTS_DATAFRAME)
76
+
77
+
78
+ def start(benchmark_runs : List[str], benchmark_cycles : int) -> Generator[List[Any], None, None]:
79
+ facefusion.globals.source_paths = [ '.assets/examples/source.jpg' ]
80
+ target_paths = [ BENCHMARKS[benchmark_run] for benchmark_run in benchmark_runs if benchmark_run in BENCHMARKS ]
81
+ benchmark_results = []
82
+ if target_paths:
83
+ pre_process()
84
+ for target_path in target_paths:
85
+ benchmark_results.append(benchmark(target_path, benchmark_cycles))
86
+ yield benchmark_results
87
+ post_process()
88
+
89
+
90
+ def pre_process() -> None:
91
+ limit_resources()
92
+ get_face_analyser()
93
+ for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
94
+ frame_processor_module.get_frame_processor()
95
+
96
+
97
+ def post_process() -> None:
98
+ clear_static_faces()
99
+
100
+
101
+ def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]:
102
+ process_times = []
103
+ total_fps = 0.0
104
+ for i in range(benchmark_cycles):
105
+ facefusion.globals.target_path = target_path
106
+ facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, tempfile.gettempdir())
107
+ video_frame_total = count_video_frame_total(facefusion.globals.target_path)
108
+ start_time = time.perf_counter()
109
+ conditional_process()
110
+ end_time = time.perf_counter()
111
+ process_time = end_time - start_time
112
+ total_fps += video_frame_total / process_time
113
+ process_times.append(process_time)
114
+ average_run = round(statistics.mean(process_times), 2)
115
+ fastest_run = round(min(process_times), 2)
116
+ slowest_run = round(max(process_times), 2)
117
+ relative_fps = round(total_fps / benchmark_cycles, 2)
118
+ return\
119
+ [
120
+ facefusion.globals.target_path,
121
+ benchmark_cycles,
122
+ average_run,
123
+ fastest_run,
124
+ slowest_run,
125
+ relative_fps
126
+ ]
127
+
128
+
129
+ def clear() -> gradio.Dataframe:
130
+ if facefusion.globals.target_path:
131
+ clear_temp(facefusion.globals.target_path)
132
+ return gradio.Dataframe(value = None)
facefusion/uis/components/benchmark_options.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import gradio
3
+
4
+ from facefusion import wording
5
+ from facefusion.uis.core import register_ui_component
6
+ from facefusion.uis.components.benchmark import BENCHMARKS
7
+
8
+ BENCHMARK_RUNS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
9
+ BENCHMARK_CYCLES_SLIDER : Optional[gradio.Button] = None
10
+
11
+
12
+ def render() -> None:
13
+ global BENCHMARK_RUNS_CHECKBOX_GROUP
14
+ global BENCHMARK_CYCLES_SLIDER
15
+
16
+ BENCHMARK_RUNS_CHECKBOX_GROUP = gradio.CheckboxGroup(
17
+ label = wording.get('benchmark_runs_checkbox_group_label'),
18
+ value = list(BENCHMARKS.keys()),
19
+ choices = list(BENCHMARKS.keys())
20
+ )
21
+ BENCHMARK_CYCLES_SLIDER = gradio.Slider(
22
+ label = wording.get('benchmark_cycles_slider_label'),
23
+ value = 3,
24
+ step = 1,
25
+ minimum = 1,
26
+ maximum = 10
27
+ )
28
+ register_ui_component('benchmark_runs_checkbox_group', BENCHMARK_RUNS_CHECKBOX_GROUP)
29
+ register_ui_component('benchmark_cycles_slider', BENCHMARK_CYCLES_SLIDER)
facefusion/uis/components/common_options.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, List
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ from facefusion import wording
6
+ from facefusion.uis import choices as uis_choices
7
+
8
+ COMMON_OPTIONS_CHECKBOX_GROUP : Optional[gradio.Checkboxgroup] = None
9
+
10
+
11
+ def render() -> None:
12
+ global COMMON_OPTIONS_CHECKBOX_GROUP
13
+
14
+ value = []
15
+ if facefusion.globals.keep_fps:
16
+ value.append('keep-fps')
17
+ if facefusion.globals.keep_temp:
18
+ value.append('keep-temp')
19
+ if facefusion.globals.skip_audio:
20
+ value.append('skip-audio')
21
+ if facefusion.globals.skip_download:
22
+ value.append('skip-download')
23
+ COMMON_OPTIONS_CHECKBOX_GROUP = gradio.Checkboxgroup(
24
+ label = wording.get('common_options_checkbox_group_label'),
25
+ choices = uis_choices.common_options,
26
+ value = value
27
+ )
28
+
29
+
30
+ def listen() -> None:
31
+ COMMON_OPTIONS_CHECKBOX_GROUP.change(update, inputs = COMMON_OPTIONS_CHECKBOX_GROUP)
32
+
33
+
34
+ def update(common_options : List[str]) -> None:
35
+ facefusion.globals.keep_fps = 'keep-fps' in common_options
36
+ facefusion.globals.keep_temp = 'keep-temp' in common_options
37
+ facefusion.globals.skip_audio = 'skip-audio' in common_options
38
+ facefusion.globals.skip_download = 'skip-download' in common_options
facefusion/uis/components/execution.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+ import gradio
3
+ import onnxruntime
4
+
5
+ import facefusion.globals
6
+ from facefusion import wording
7
+ from facefusion.face_analyser import clear_face_analyser
8
+ from facefusion.processors.frame.core import clear_frame_processors_modules
9
+ from facefusion.execution_helper import encode_execution_providers, decode_execution_providers
10
+
11
+ EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
12
+
13
+
14
+ def render() -> None:
15
+ global EXECUTION_PROVIDERS_CHECKBOX_GROUP
16
+
17
+ EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
18
+ label = wording.get('execution_providers_checkbox_group_label'),
19
+ choices = encode_execution_providers(onnxruntime.get_available_providers()),
20
+ value = encode_execution_providers(facefusion.globals.execution_providers)
21
+ )
22
+
23
+
24
+ def listen() -> None:
25
+ EXECUTION_PROVIDERS_CHECKBOX_GROUP.change(update_execution_providers, inputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP, outputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP)
26
+
27
+
28
+ def update_execution_providers(execution_providers : List[str]) -> gradio.CheckboxGroup:
29
+ clear_face_analyser()
30
+ clear_frame_processors_modules()
31
+ if not execution_providers:
32
+ execution_providers = encode_execution_providers(onnxruntime.get_available_providers())
33
+ facefusion.globals.execution_providers = decode_execution_providers(execution_providers)
34
+ return gradio.CheckboxGroup(value = execution_providers)
facefusion/uis/components/execution_queue_count.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ import facefusion.choices
6
+ from facefusion import wording
7
+
8
+ EXECUTION_QUEUE_COUNT_SLIDER : Optional[gradio.Slider] = None
9
+
10
+
11
+ def render() -> None:
12
+ global EXECUTION_QUEUE_COUNT_SLIDER
13
+
14
+ EXECUTION_QUEUE_COUNT_SLIDER = gradio.Slider(
15
+ label = wording.get('execution_queue_count_slider_label'),
16
+ value = facefusion.globals.execution_queue_count,
17
+ step = facefusion.choices.execution_queue_count_range[1] - facefusion.choices.execution_queue_count_range[0],
18
+ minimum = facefusion.choices.execution_queue_count_range[0],
19
+ maximum = facefusion.choices.execution_queue_count_range[-1]
20
+ )
21
+
22
+
23
+ def listen() -> None:
24
+ EXECUTION_QUEUE_COUNT_SLIDER.change(update_execution_queue_count, inputs = EXECUTION_QUEUE_COUNT_SLIDER)
25
+
26
+
27
+ def update_execution_queue_count(execution_queue_count : int = 1) -> None:
28
+ facefusion.globals.execution_queue_count = execution_queue_count
facefusion/uis/components/execution_thread_count.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ import facefusion.choices
6
+ from facefusion import wording
7
+
8
+ EXECUTION_THREAD_COUNT_SLIDER : Optional[gradio.Slider] = None
9
+
10
+
11
+ def render() -> None:
12
+ global EXECUTION_THREAD_COUNT_SLIDER
13
+
14
+ EXECUTION_THREAD_COUNT_SLIDER = gradio.Slider(
15
+ label = wording.get('execution_thread_count_slider_label'),
16
+ value = facefusion.globals.execution_thread_count,
17
+ step = facefusion.choices.execution_thread_count_range[1] - facefusion.choices.execution_thread_count_range[0],
18
+ minimum = facefusion.choices.execution_thread_count_range[0],
19
+ maximum = facefusion.choices.execution_thread_count_range[-1]
20
+ )
21
+
22
+
23
+ def listen() -> None:
24
+ EXECUTION_THREAD_COUNT_SLIDER.change(update_execution_thread_count, inputs = EXECUTION_THREAD_COUNT_SLIDER)
25
+
26
+
27
+ def update_execution_thread_count(execution_thread_count : int = 1) -> None:
28
+ facefusion.globals.execution_thread_count = execution_thread_count
29
+
facefusion/uis/components/face_analyser.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ import gradio
4
+
5
+ import facefusion.globals
6
+ import facefusion.choices
7
+ from facefusion import wording
8
+ from facefusion.typing import FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceDetectorModel
9
+ from facefusion.uis.core import register_ui_component
10
+
11
+ FACE_ANALYSER_ORDER_DROPDOWN : Optional[gradio.Dropdown] = None
12
+ FACE_ANALYSER_AGE_DROPDOWN : Optional[gradio.Dropdown] = None
13
+ FACE_ANALYSER_GENDER_DROPDOWN : Optional[gradio.Dropdown] = None
14
+ FACE_DETECTOR_SIZE_DROPDOWN : Optional[gradio.Dropdown] = None
15
+ FACE_DETECTOR_SCORE_SLIDER : Optional[gradio.Slider] = None
16
+ FACE_DETECTOR_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
17
+
18
+
19
+ def render() -> None:
20
+ global FACE_ANALYSER_ORDER_DROPDOWN
21
+ global FACE_ANALYSER_AGE_DROPDOWN
22
+ global FACE_ANALYSER_GENDER_DROPDOWN
23
+ global FACE_DETECTOR_SIZE_DROPDOWN
24
+ global FACE_DETECTOR_SCORE_SLIDER
25
+ global FACE_DETECTOR_MODEL_DROPDOWN
26
+
27
+ with gradio.Row():
28
+ FACE_ANALYSER_ORDER_DROPDOWN = gradio.Dropdown(
29
+ label = wording.get('face_analyser_order_dropdown_label'),
30
+ choices = facefusion.choices.face_analyser_orders,
31
+ value = facefusion.globals.face_analyser_order
32
+ )
33
+ FACE_ANALYSER_AGE_DROPDOWN = gradio.Dropdown(
34
+ label = wording.get('face_analyser_age_dropdown_label'),
35
+ choices = [ 'none' ] + facefusion.choices.face_analyser_ages,
36
+ value = facefusion.globals.face_analyser_age or 'none'
37
+ )
38
+ FACE_ANALYSER_GENDER_DROPDOWN = gradio.Dropdown(
39
+ label = wording.get('face_analyser_gender_dropdown_label'),
40
+ choices = [ 'none' ] + facefusion.choices.face_analyser_genders,
41
+ value = facefusion.globals.face_analyser_gender or 'none'
42
+ )
43
+ FACE_DETECTOR_MODEL_DROPDOWN = gradio.Dropdown(
44
+ label = wording.get('face_detector_model_dropdown_label'),
45
+ choices = facefusion.choices.face_detector_models,
46
+ value = facefusion.globals.face_detector_model
47
+ )
48
+ FACE_DETECTOR_SIZE_DROPDOWN = gradio.Dropdown(
49
+ label = wording.get('face_detector_size_dropdown_label'),
50
+ choices = facefusion.choices.face_detector_sizes,
51
+ value = facefusion.globals.face_detector_size
52
+ )
53
+ FACE_DETECTOR_SCORE_SLIDER = gradio.Slider(
54
+ label = wording.get('face_detector_score_slider_label'),
55
+ value = facefusion.globals.face_detector_score,
56
+ step = facefusion.choices.face_detector_score_range[1] - facefusion.choices.face_detector_score_range[0],
57
+ minimum = facefusion.choices.face_detector_score_range[0],
58
+ maximum = facefusion.choices.face_detector_score_range[-1]
59
+ )
60
+ register_ui_component('face_analyser_order_dropdown', FACE_ANALYSER_ORDER_DROPDOWN)
61
+ register_ui_component('face_analyser_age_dropdown', FACE_ANALYSER_AGE_DROPDOWN)
62
+ register_ui_component('face_analyser_gender_dropdown', FACE_ANALYSER_GENDER_DROPDOWN)
63
+ register_ui_component('face_detector_model_dropdown', FACE_DETECTOR_MODEL_DROPDOWN)
64
+ register_ui_component('face_detector_size_dropdown', FACE_DETECTOR_SIZE_DROPDOWN)
65
+ register_ui_component('face_detector_score_slider', FACE_DETECTOR_SCORE_SLIDER)
66
+
67
+
68
+ def listen() -> None:
69
+ FACE_ANALYSER_ORDER_DROPDOWN.select(update_face_analyser_order, inputs = FACE_ANALYSER_ORDER_DROPDOWN)
70
+ FACE_ANALYSER_AGE_DROPDOWN.select(update_face_analyser_age, inputs = FACE_ANALYSER_AGE_DROPDOWN)
71
+ FACE_ANALYSER_GENDER_DROPDOWN.select(update_face_analyser_gender, inputs = FACE_ANALYSER_GENDER_DROPDOWN)
72
+ FACE_DETECTOR_MODEL_DROPDOWN.change(update_face_detector_model, inputs = FACE_DETECTOR_MODEL_DROPDOWN)
73
+ FACE_DETECTOR_SIZE_DROPDOWN.select(update_face_detector_size, inputs = FACE_DETECTOR_SIZE_DROPDOWN)
74
+ FACE_DETECTOR_SCORE_SLIDER.change(update_face_detector_score, inputs = FACE_DETECTOR_SCORE_SLIDER)
75
+
76
+
77
+ def update_face_analyser_order(face_analyser_order : FaceAnalyserOrder) -> None:
78
+ facefusion.globals.face_analyser_order = face_analyser_order if face_analyser_order != 'none' else None
79
+
80
+
81
+ def update_face_analyser_age(face_analyser_age : FaceAnalyserAge) -> None:
82
+ facefusion.globals.face_analyser_age = face_analyser_age if face_analyser_age != 'none' else None
83
+
84
+
85
+ def update_face_analyser_gender(face_analyser_gender : FaceAnalyserGender) -> None:
86
+ facefusion.globals.face_analyser_gender = face_analyser_gender if face_analyser_gender != 'none' else None
87
+
88
+
89
+ def update_face_detector_model(face_detector_model : FaceDetectorModel) -> None:
90
+ facefusion.globals.face_detector_model = face_detector_model
91
+
92
+
93
+ def update_face_detector_size(face_detector_size : str) -> None:
94
+ facefusion.globals.face_detector_size = face_detector_size
95
+
96
+
97
+ def update_face_detector_score(face_detector_score : float) -> None:
98
+ facefusion.globals.face_detector_score = face_detector_score
facefusion/uis/components/face_masker.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, List
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ import facefusion.choices
6
+ from facefusion import wording
7
+ from facefusion.typing import FaceMaskType, FaceMaskRegion
8
+ from facefusion.uis.core import register_ui_component
9
+
10
+ FACE_MASK_TYPES_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
11
+ FACE_MASK_BLUR_SLIDER : Optional[gradio.Slider] = None
12
+ FACE_MASK_BOX_GROUP : Optional[gradio.Group] = None
13
+ FACE_MASK_REGION_GROUP : Optional[gradio.Group] = None
14
+ FACE_MASK_PADDING_TOP_SLIDER : Optional[gradio.Slider] = None
15
+ FACE_MASK_PADDING_RIGHT_SLIDER : Optional[gradio.Slider] = None
16
+ FACE_MASK_PADDING_BOTTOM_SLIDER : Optional[gradio.Slider] = None
17
+ FACE_MASK_PADDING_LEFT_SLIDER : Optional[gradio.Slider] = None
18
+ FACE_MASK_REGION_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
19
+
20
+
21
+ def render() -> None:
22
+ global FACE_MASK_TYPES_CHECKBOX_GROUP
23
+ global FACE_MASK_BLUR_SLIDER
24
+ global FACE_MASK_BOX_GROUP
25
+ global FACE_MASK_REGION_GROUP
26
+ global FACE_MASK_PADDING_TOP_SLIDER
27
+ global FACE_MASK_PADDING_RIGHT_SLIDER
28
+ global FACE_MASK_PADDING_BOTTOM_SLIDER
29
+ global FACE_MASK_PADDING_LEFT_SLIDER
30
+ global FACE_MASK_REGION_CHECKBOX_GROUP
31
+
32
+ has_box_mask = 'box' in facefusion.globals.face_mask_types
33
+ has_region_mask = 'region' in facefusion.globals.face_mask_types
34
+ FACE_MASK_TYPES_CHECKBOX_GROUP = gradio.CheckboxGroup(
35
+ label = wording.get('face_mask_types_checkbox_group_label'),
36
+ choices = facefusion.choices.face_mask_types,
37
+ value = facefusion.globals.face_mask_types
38
+ )
39
+ with gradio.Group(visible = has_box_mask) as FACE_MASK_BOX_GROUP:
40
+ FACE_MASK_BLUR_SLIDER = gradio.Slider(
41
+ label = wording.get('face_mask_blur_slider_label'),
42
+ step = facefusion.choices.face_mask_blur_range[1] - facefusion.choices.face_mask_blur_range[0],
43
+ minimum = facefusion.choices.face_mask_blur_range[0],
44
+ maximum = facefusion.choices.face_mask_blur_range[-1],
45
+ value = facefusion.globals.face_mask_blur
46
+ )
47
+ with gradio.Row():
48
+ FACE_MASK_PADDING_TOP_SLIDER = gradio.Slider(
49
+ label = wording.get('face_mask_padding_top_slider_label'),
50
+ step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0],
51
+ minimum = facefusion.choices.face_mask_padding_range[0],
52
+ maximum = facefusion.choices.face_mask_padding_range[-1],
53
+ value = facefusion.globals.face_mask_padding[0]
54
+ )
55
+ FACE_MASK_PADDING_RIGHT_SLIDER = gradio.Slider(
56
+ label = wording.get('face_mask_padding_right_slider_label'),
57
+ step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0],
58
+ minimum = facefusion.choices.face_mask_padding_range[0],
59
+ maximum = facefusion.choices.face_mask_padding_range[-1],
60
+ value = facefusion.globals.face_mask_padding[1]
61
+ )
62
+ with gradio.Row():
63
+ FACE_MASK_PADDING_BOTTOM_SLIDER = gradio.Slider(
64
+ label = wording.get('face_mask_padding_bottom_slider_label'),
65
+ step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0],
66
+ minimum = facefusion.choices.face_mask_padding_range[0],
67
+ maximum = facefusion.choices.face_mask_padding_range[-1],
68
+ value = facefusion.globals.face_mask_padding[2]
69
+ )
70
+ FACE_MASK_PADDING_LEFT_SLIDER = gradio.Slider(
71
+ label = wording.get('face_mask_padding_left_slider_label'),
72
+ step = facefusion.choices.face_mask_padding_range[1] - facefusion.choices.face_mask_padding_range[0],
73
+ minimum = facefusion.choices.face_mask_padding_range[0],
74
+ maximum = facefusion.choices.face_mask_padding_range[-1],
75
+ value = facefusion.globals.face_mask_padding[3]
76
+ )
77
+ with gradio.Row():
78
+ FACE_MASK_REGION_CHECKBOX_GROUP = gradio.CheckboxGroup(
79
+ label = wording.get('face_mask_region_checkbox_group_label'),
80
+ choices = facefusion.choices.face_mask_regions,
81
+ value = facefusion.globals.face_mask_regions,
82
+ visible = has_region_mask
83
+ )
84
+ register_ui_component('face_mask_types_checkbox_group', FACE_MASK_TYPES_CHECKBOX_GROUP)
85
+ register_ui_component('face_mask_blur_slider', FACE_MASK_BLUR_SLIDER)
86
+ register_ui_component('face_mask_padding_top_slider', FACE_MASK_PADDING_TOP_SLIDER)
87
+ register_ui_component('face_mask_padding_right_slider', FACE_MASK_PADDING_RIGHT_SLIDER)
88
+ register_ui_component('face_mask_padding_bottom_slider', FACE_MASK_PADDING_BOTTOM_SLIDER)
89
+ register_ui_component('face_mask_padding_left_slider', FACE_MASK_PADDING_LEFT_SLIDER)
90
+ register_ui_component('face_mask_region_checkbox_group', FACE_MASK_REGION_CHECKBOX_GROUP)
91
+
92
+
93
+ def listen() -> None:
94
+ FACE_MASK_TYPES_CHECKBOX_GROUP.change(update_face_mask_type, inputs = FACE_MASK_TYPES_CHECKBOX_GROUP, outputs = [ FACE_MASK_TYPES_CHECKBOX_GROUP, FACE_MASK_BOX_GROUP, FACE_MASK_REGION_CHECKBOX_GROUP ])
95
+ FACE_MASK_BLUR_SLIDER.change(update_face_mask_blur, inputs = FACE_MASK_BLUR_SLIDER)
96
+ FACE_MASK_REGION_CHECKBOX_GROUP.change(update_face_mask_regions, inputs = FACE_MASK_REGION_CHECKBOX_GROUP, outputs = FACE_MASK_REGION_CHECKBOX_GROUP)
97
+ face_mask_padding_sliders = [ FACE_MASK_PADDING_TOP_SLIDER, FACE_MASK_PADDING_RIGHT_SLIDER, FACE_MASK_PADDING_BOTTOM_SLIDER, FACE_MASK_PADDING_LEFT_SLIDER ]
98
+ for face_mask_padding_slider in face_mask_padding_sliders:
99
+ face_mask_padding_slider.change(update_face_mask_padding, inputs = face_mask_padding_sliders)
100
+
101
+
102
+ def update_face_mask_type(face_mask_types : List[FaceMaskType]) -> Tuple[gradio.CheckboxGroup, gradio.Group, gradio.CheckboxGroup]:
103
+ if not face_mask_types:
104
+ face_mask_types = facefusion.choices.face_mask_types
105
+ facefusion.globals.face_mask_types = face_mask_types
106
+ has_box_mask = 'box' in face_mask_types
107
+ has_region_mask = 'region' in face_mask_types
108
+ return gradio.CheckboxGroup(value = face_mask_types), gradio.Group(visible = has_box_mask), gradio.CheckboxGroup(visible = has_region_mask)
109
+
110
+
111
+ def update_face_mask_blur(face_mask_blur : float) -> None:
112
+ facefusion.globals.face_mask_blur = face_mask_blur
113
+
114
+
115
+ def update_face_mask_padding(face_mask_padding_top : int, face_mask_padding_right : int, face_mask_padding_bottom : int, face_mask_padding_left : int) -> None:
116
+ facefusion.globals.face_mask_padding = (face_mask_padding_top, face_mask_padding_right, face_mask_padding_bottom, face_mask_padding_left)
117
+
118
+
119
+ def update_face_mask_regions(face_mask_regions : List[FaceMaskRegion]) -> gradio.CheckboxGroup:
120
+ if not face_mask_regions:
121
+ face_mask_regions = facefusion.choices.face_mask_regions
122
+ facefusion.globals.face_mask_regions = face_mask_regions
123
+ return gradio.CheckboxGroup(value = face_mask_regions)
facefusion/uis/components/face_selector.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Any, Dict
2
+
3
+ import gradio
4
+
5
+ import facefusion.globals
6
+ import facefusion.choices
7
+ from facefusion import wording
8
+ from facefusion.face_store import clear_static_faces, clear_reference_faces
9
+ from facefusion.vision import get_video_frame, read_static_image, normalize_frame_color
10
+ from facefusion.face_analyser import get_many_faces
11
+ from facefusion.typing import Frame, FaceSelectorMode
12
+ from facefusion.filesystem import is_image, is_video
13
+ from facefusion.uis.core import get_ui_component, register_ui_component
14
+ from facefusion.uis.typing import ComponentName
15
+
16
+ FACE_SELECTOR_MODE_DROPDOWN : Optional[gradio.Dropdown] = None
17
+ REFERENCE_FACE_POSITION_GALLERY : Optional[gradio.Gallery] = None
18
+ REFERENCE_FACE_DISTANCE_SLIDER : Optional[gradio.Slider] = None
19
+
20
+
21
+ def render() -> None:
22
+ global FACE_SELECTOR_MODE_DROPDOWN
23
+ global REFERENCE_FACE_POSITION_GALLERY
24
+ global REFERENCE_FACE_DISTANCE_SLIDER
25
+
26
+ reference_face_gallery_args: Dict[str, Any] =\
27
+ {
28
+ 'label': wording.get('reference_face_gallery_label'),
29
+ 'object_fit': 'cover',
30
+ 'columns': 8,
31
+ 'allow_preview': False,
32
+ 'visible': 'reference' in facefusion.globals.face_selector_mode
33
+ }
34
+ if is_image(facefusion.globals.target_path):
35
+ reference_frame = read_static_image(facefusion.globals.target_path)
36
+ reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
37
+ if is_video(facefusion.globals.target_path):
38
+ reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
39
+ reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
40
+ FACE_SELECTOR_MODE_DROPDOWN = gradio.Dropdown(
41
+ label = wording.get('face_selector_mode_dropdown_label'),
42
+ choices = facefusion.choices.face_selector_modes,
43
+ value = facefusion.globals.face_selector_mode
44
+ )
45
+ REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args)
46
+ REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider(
47
+ label = wording.get('reference_face_distance_slider_label'),
48
+ value = facefusion.globals.reference_face_distance,
49
+ step = facefusion.choices.reference_face_distance_range[1] - facefusion.choices.reference_face_distance_range[0],
50
+ minimum = facefusion.choices.reference_face_distance_range[0],
51
+ maximum = facefusion.choices.reference_face_distance_range[-1],
52
+ visible = 'reference' in facefusion.globals.face_selector_mode
53
+ )
54
+ register_ui_component('face_selector_mode_dropdown', FACE_SELECTOR_MODE_DROPDOWN)
55
+ register_ui_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY)
56
+ register_ui_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER)
57
+
58
+
59
+ def listen() -> None:
60
+ FACE_SELECTOR_MODE_DROPDOWN.select(update_face_selector_mode, inputs = FACE_SELECTOR_MODE_DROPDOWN, outputs = [ REFERENCE_FACE_POSITION_GALLERY, REFERENCE_FACE_DISTANCE_SLIDER ])
61
+ REFERENCE_FACE_POSITION_GALLERY.select(clear_and_update_reference_face_position)
62
+ REFERENCE_FACE_DISTANCE_SLIDER.change(update_reference_face_distance, inputs = REFERENCE_FACE_DISTANCE_SLIDER)
63
+ multi_component_names : List[ComponentName] =\
64
+ [
65
+ 'target_image',
66
+ 'target_video'
67
+ ]
68
+ for component_name in multi_component_names:
69
+ component = get_ui_component(component_name)
70
+ if component:
71
+ for method in [ 'upload', 'change', 'clear' ]:
72
+ getattr(component, method)(update_reference_face_position)
73
+ getattr(component, method)(update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY)
74
+ change_one_component_names : List[ComponentName] =\
75
+ [
76
+ 'face_analyser_order_dropdown',
77
+ 'face_analyser_age_dropdown',
78
+ 'face_analyser_gender_dropdown'
79
+ ]
80
+ for component_name in change_one_component_names:
81
+ component = get_ui_component(component_name)
82
+ if component:
83
+ component.change(update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY)
84
+ change_two_component_names : List[ComponentName] =\
85
+ [
86
+ 'face_detector_model_dropdown',
87
+ 'face_detector_size_dropdown',
88
+ 'face_detector_score_slider'
89
+ ]
90
+ for component_name in change_two_component_names:
91
+ component = get_ui_component(component_name)
92
+ if component:
93
+ component.change(clear_and_update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY)
94
+ preview_frame_slider = get_ui_component('preview_frame_slider')
95
+ if preview_frame_slider:
96
+ preview_frame_slider.change(update_reference_frame_number, inputs = preview_frame_slider)
97
+ preview_frame_slider.release(update_reference_position_gallery, outputs = REFERENCE_FACE_POSITION_GALLERY)
98
+
99
+
100
+ def update_face_selector_mode(face_selector_mode : FaceSelectorMode) -> Tuple[gradio.Gallery, gradio.Slider]:
101
+ if face_selector_mode == 'reference':
102
+ facefusion.globals.face_selector_mode = face_selector_mode
103
+ return gradio.Gallery(visible = True), gradio.Slider(visible = True)
104
+ if face_selector_mode == 'one':
105
+ facefusion.globals.face_selector_mode = face_selector_mode
106
+ return gradio.Gallery(visible = False), gradio.Slider(visible = False)
107
+ if face_selector_mode == 'many':
108
+ facefusion.globals.face_selector_mode = face_selector_mode
109
+ return gradio.Gallery(visible = False), gradio.Slider(visible = False)
110
+
111
+
112
+ def clear_and_update_reference_face_position(event : gradio.SelectData) -> gradio.Gallery:
113
+ clear_reference_faces()
114
+ clear_static_faces()
115
+ update_reference_face_position(event.index)
116
+ return update_reference_position_gallery()
117
+
118
+
119
+ def update_reference_face_position(reference_face_position : int = 0) -> None:
120
+ facefusion.globals.reference_face_position = reference_face_position
121
+
122
+
123
+ def update_reference_face_distance(reference_face_distance : float) -> None:
124
+ facefusion.globals.reference_face_distance = reference_face_distance
125
+
126
+
127
+ def update_reference_frame_number(reference_frame_number : int) -> None:
128
+ facefusion.globals.reference_frame_number = reference_frame_number
129
+
130
+
131
+ def clear_and_update_reference_position_gallery() -> gradio.Gallery:
132
+ clear_reference_faces()
133
+ clear_static_faces()
134
+ return update_reference_position_gallery()
135
+
136
+
137
+ def update_reference_position_gallery() -> gradio.Gallery:
138
+ gallery_frames = []
139
+ if is_image(facefusion.globals.target_path):
140
+ reference_frame = read_static_image(facefusion.globals.target_path)
141
+ gallery_frames = extract_gallery_frames(reference_frame)
142
+ if is_video(facefusion.globals.target_path):
143
+ reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
144
+ gallery_frames = extract_gallery_frames(reference_frame)
145
+ if gallery_frames:
146
+ return gradio.Gallery(value = gallery_frames)
147
+ return gradio.Gallery(value = None)
148
+
149
+
150
+ def extract_gallery_frames(reference_frame : Frame) -> List[Frame]:
151
+ crop_frames = []
152
+ faces = get_many_faces(reference_frame)
153
+ for face in faces:
154
+ start_x, start_y, end_x, end_y = map(int, face.bbox)
155
+ padding_x = int((end_x - start_x) * 0.25)
156
+ padding_y = int((end_y - start_y) * 0.25)
157
+ start_x = max(0, start_x - padding_x)
158
+ start_y = max(0, start_y - padding_y)
159
+ end_x = max(0, end_x + padding_x)
160
+ end_y = max(0, end_y + padding_y)
161
+ crop_frame = reference_frame[start_y:end_y, start_x:end_x]
162
+ crop_frame = normalize_frame_color(crop_frame)
163
+ crop_frames.append(crop_frame)
164
+ return crop_frames
facefusion/uis/components/frame_processors.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ from facefusion import wording
6
+ from facefusion.processors.frame.core import load_frame_processor_module, clear_frame_processors_modules
7
+ from facefusion.filesystem import list_module_names
8
+ from facefusion.uis.core import register_ui_component
9
+
10
+ FRAME_PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
11
+
12
+
13
+ def render() -> None:
14
+ global FRAME_PROCESSORS_CHECKBOX_GROUP
15
+
16
+ FRAME_PROCESSORS_CHECKBOX_GROUP = gradio.CheckboxGroup(
17
+ label = wording.get('frame_processors_checkbox_group_label'),
18
+ choices = sort_frame_processors(facefusion.globals.frame_processors),
19
+ value = facefusion.globals.frame_processors
20
+ )
21
+ register_ui_component('frame_processors_checkbox_group', FRAME_PROCESSORS_CHECKBOX_GROUP)
22
+
23
+
24
+ def listen() -> None:
25
+ FRAME_PROCESSORS_CHECKBOX_GROUP.change(update_frame_processors, inputs = FRAME_PROCESSORS_CHECKBOX_GROUP, outputs = FRAME_PROCESSORS_CHECKBOX_GROUP)
26
+
27
+
28
+ def update_frame_processors(frame_processors : List[str]) -> gradio.CheckboxGroup:
29
+ facefusion.globals.frame_processors = frame_processors
30
+ clear_frame_processors_modules()
31
+ for frame_processor in frame_processors:
32
+ frame_processor_module = load_frame_processor_module(frame_processor)
33
+ if not frame_processor_module.pre_check():
34
+ return gradio.CheckboxGroup()
35
+ return gradio.CheckboxGroup(value = frame_processors, choices = sort_frame_processors(frame_processors))
36
+
37
+
38
+ def sort_frame_processors(frame_processors : List[str]) -> list[str]:
39
+ available_frame_processors = list_module_names('facefusion/processors/frame/modules')
40
+ return sorted(available_frame_processors, key = lambda frame_processor : frame_processors.index(frame_processor) if frame_processor in frame_processors else len(frame_processors))
facefusion/uis/components/frame_processors_options.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ from facefusion import wording
6
+ from facefusion.processors.frame.core import load_frame_processor_module
7
+ from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
8
+ from facefusion.processors.frame.typings import FaceSwapperModel, FaceEnhancerModel, FrameEnhancerModel, FaceDebuggerItem
9
+ from facefusion.uis.core import get_ui_component, register_ui_component
10
+
11
+ FACE_SWAPPER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
12
+ FACE_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
13
+ FACE_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None
14
+ FRAME_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
15
+ FRAME_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None
16
+ FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
17
+
18
+
19
+ def render() -> None:
20
+ global FACE_SWAPPER_MODEL_DROPDOWN
21
+ global FACE_ENHANCER_MODEL_DROPDOWN
22
+ global FACE_ENHANCER_BLEND_SLIDER
23
+ global FRAME_ENHANCER_MODEL_DROPDOWN
24
+ global FRAME_ENHANCER_BLEND_SLIDER
25
+ global FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP
26
+
27
+ FACE_SWAPPER_MODEL_DROPDOWN = gradio.Dropdown(
28
+ label = wording.get('face_swapper_model_dropdown_label'),
29
+ choices = frame_processors_choices.face_swapper_models,
30
+ value = frame_processors_globals.face_swapper_model,
31
+ visible = 'face_swapper' in facefusion.globals.frame_processors
32
+ )
33
+ FACE_ENHANCER_MODEL_DROPDOWN = gradio.Dropdown(
34
+ label = wording.get('face_enhancer_model_dropdown_label'),
35
+ choices = frame_processors_choices.face_enhancer_models,
36
+ value = frame_processors_globals.face_enhancer_model,
37
+ visible = 'face_enhancer' in facefusion.globals.frame_processors
38
+ )
39
+ FACE_ENHANCER_BLEND_SLIDER = gradio.Slider(
40
+ label = wording.get('face_enhancer_blend_slider_label'),
41
+ value = frame_processors_globals.face_enhancer_blend,
42
+ step = frame_processors_choices.face_enhancer_blend_range[1] - frame_processors_choices.face_enhancer_blend_range[0],
43
+ minimum = frame_processors_choices.face_enhancer_blend_range[0],
44
+ maximum = frame_processors_choices.face_enhancer_blend_range[-1],
45
+ visible = 'face_enhancer' in facefusion.globals.frame_processors
46
+ )
47
+ FRAME_ENHANCER_MODEL_DROPDOWN = gradio.Dropdown(
48
+ label = wording.get('frame_enhancer_model_dropdown_label'),
49
+ choices = frame_processors_choices.frame_enhancer_models,
50
+ value = frame_processors_globals.frame_enhancer_model,
51
+ visible = 'frame_enhancer' in facefusion.globals.frame_processors
52
+ )
53
+ FRAME_ENHANCER_BLEND_SLIDER = gradio.Slider(
54
+ label = wording.get('frame_enhancer_blend_slider_label'),
55
+ value = frame_processors_globals.frame_enhancer_blend,
56
+ step = frame_processors_choices.frame_enhancer_blend_range[1] - frame_processors_choices.frame_enhancer_blend_range[0],
57
+ minimum = frame_processors_choices.frame_enhancer_blend_range[0],
58
+ maximum = frame_processors_choices.frame_enhancer_blend_range[-1],
59
+ visible = 'face_enhancer' in facefusion.globals.frame_processors
60
+ )
61
+ FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP = gradio.CheckboxGroup(
62
+ label = wording.get('face_debugger_items_checkbox_group_label'),
63
+ choices = frame_processors_choices.face_debugger_items,
64
+ value = frame_processors_globals.face_debugger_items,
65
+ visible = 'face_debugger' in facefusion.globals.frame_processors
66
+ )
67
+
68
+ register_ui_component('face_swapper_model_dropdown', FACE_SWAPPER_MODEL_DROPDOWN)
69
+ register_ui_component('face_enhancer_model_dropdown', FACE_ENHANCER_MODEL_DROPDOWN)
70
+ register_ui_component('face_enhancer_blend_slider', FACE_ENHANCER_BLEND_SLIDER)
71
+ register_ui_component('frame_enhancer_model_dropdown', FRAME_ENHANCER_MODEL_DROPDOWN)
72
+ register_ui_component('frame_enhancer_blend_slider', FRAME_ENHANCER_BLEND_SLIDER)
73
+ register_ui_component('face_debugger_items_checkbox_group', FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP)
74
+
75
+
76
+ def listen() -> None:
77
+ FACE_SWAPPER_MODEL_DROPDOWN.change(update_face_swapper_model, inputs = FACE_SWAPPER_MODEL_DROPDOWN, outputs = FACE_SWAPPER_MODEL_DROPDOWN)
78
+ FACE_ENHANCER_MODEL_DROPDOWN.change(update_face_enhancer_model, inputs = FACE_ENHANCER_MODEL_DROPDOWN, outputs = FACE_ENHANCER_MODEL_DROPDOWN)
79
+ FACE_ENHANCER_BLEND_SLIDER.change(update_face_enhancer_blend, inputs = FACE_ENHANCER_BLEND_SLIDER)
80
+ FRAME_ENHANCER_MODEL_DROPDOWN.change(update_frame_enhancer_model, inputs = FRAME_ENHANCER_MODEL_DROPDOWN, outputs = FRAME_ENHANCER_MODEL_DROPDOWN)
81
+ FRAME_ENHANCER_BLEND_SLIDER.change(update_frame_enhancer_blend, inputs = FRAME_ENHANCER_BLEND_SLIDER)
82
+ FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP.change(update_face_debugger_items, inputs = FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP)
83
+ frame_processors_checkbox_group = get_ui_component('frame_processors_checkbox_group')
84
+ if frame_processors_checkbox_group:
85
+ frame_processors_checkbox_group.change(toggle_face_swapper_model, inputs = frame_processors_checkbox_group, outputs = [ FACE_SWAPPER_MODEL_DROPDOWN, FACE_ENHANCER_MODEL_DROPDOWN, FACE_ENHANCER_BLEND_SLIDER, FRAME_ENHANCER_MODEL_DROPDOWN, FRAME_ENHANCER_BLEND_SLIDER, FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP ])
86
+
87
+
88
+ def update_face_swapper_model(face_swapper_model : FaceSwapperModel) -> gradio.Dropdown:
89
+ frame_processors_globals.face_swapper_model = face_swapper_model
90
+ if face_swapper_model == 'blendswap_256':
91
+ facefusion.globals.face_recognizer_model = 'arcface_blendswap'
92
+ if face_swapper_model == 'inswapper_128' or face_swapper_model == 'inswapper_128_fp16':
93
+ facefusion.globals.face_recognizer_model = 'arcface_inswapper'
94
+ if face_swapper_model == 'simswap_256' or face_swapper_model == 'simswap_512_unofficial':
95
+ facefusion.globals.face_recognizer_model = 'arcface_simswap'
96
+ face_swapper_module = load_frame_processor_module('face_swapper')
97
+ face_swapper_module.clear_frame_processor()
98
+ face_swapper_module.set_options('model', face_swapper_module.MODELS[face_swapper_model])
99
+ if not face_swapper_module.pre_check():
100
+ return gradio.Dropdown()
101
+ return gradio.Dropdown(value = face_swapper_model)
102
+
103
+
104
+ def update_face_enhancer_model(face_enhancer_model : FaceEnhancerModel) -> gradio.Dropdown:
105
+ frame_processors_globals.face_enhancer_model = face_enhancer_model
106
+ face_enhancer_module = load_frame_processor_module('face_enhancer')
107
+ face_enhancer_module.clear_frame_processor()
108
+ face_enhancer_module.set_options('model', face_enhancer_module.MODELS[face_enhancer_model])
109
+ if not face_enhancer_module.pre_check():
110
+ return gradio.Dropdown()
111
+ return gradio.Dropdown(value = face_enhancer_model)
112
+
113
+
114
+ def update_face_enhancer_blend(face_enhancer_blend : int) -> None:
115
+ frame_processors_globals.face_enhancer_blend = face_enhancer_blend
116
+
117
+
118
+ def update_frame_enhancer_model(frame_enhancer_model : FrameEnhancerModel) -> gradio.Dropdown:
119
+ frame_processors_globals.frame_enhancer_model = frame_enhancer_model
120
+ frame_enhancer_module = load_frame_processor_module('frame_enhancer')
121
+ frame_enhancer_module.clear_frame_processor()
122
+ frame_enhancer_module.set_options('model', frame_enhancer_module.MODELS[frame_enhancer_model])
123
+ if not frame_enhancer_module.pre_check():
124
+ return gradio.Dropdown()
125
+ return gradio.Dropdown(value = frame_enhancer_model)
126
+
127
+
128
+ def update_frame_enhancer_blend(frame_enhancer_blend : int) -> None:
129
+ frame_processors_globals.frame_enhancer_blend = frame_enhancer_blend
130
+
131
+
132
+ def update_face_debugger_items(face_debugger_items : List[FaceDebuggerItem]) -> None:
133
+ frame_processors_globals.face_debugger_items = face_debugger_items
134
+
135
+
136
+ def toggle_face_swapper_model(frame_processors : List[str]) -> Tuple[gradio.Dropdown, gradio.Dropdown, gradio.Slider, gradio.Dropdown, gradio.Slider, gradio.CheckboxGroup]:
137
+ has_face_swapper = 'face_swapper' in frame_processors
138
+ has_face_enhancer = 'face_enhancer' in frame_processors
139
+ has_frame_enhancer = 'frame_enhancer' in frame_processors
140
+ has_face_debugger = 'face_debugger' in frame_processors
141
+ return gradio.Dropdown(visible = has_face_swapper), gradio.Dropdown(visible = has_face_enhancer), gradio.Slider(visible = has_face_enhancer), gradio.Dropdown(visible = has_frame_enhancer), gradio.Slider(visible = has_frame_enhancer), gradio.CheckboxGroup(visible = has_face_debugger)
facefusion/uis/components/limit_resources.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ import facefusion.choices
6
+ from facefusion import wording
7
+
8
+ MAX_MEMORY_SLIDER : Optional[gradio.Slider] = None
9
+
10
+
11
+ def render() -> None:
12
+ global MAX_MEMORY_SLIDER
13
+
14
+ MAX_MEMORY_SLIDER = gradio.Slider(
15
+ label = wording.get('max_memory_slider_label'),
16
+ step = facefusion.choices.max_memory_range[1] - facefusion.choices.max_memory_range[0],
17
+ minimum = facefusion.choices.max_memory_range[0],
18
+ maximum = facefusion.choices.max_memory_range[-1]
19
+ )
20
+
21
+
22
+ def listen() -> None:
23
+ MAX_MEMORY_SLIDER.change(update_max_memory, inputs = MAX_MEMORY_SLIDER)
24
+
25
+
26
+ def update_max_memory(max_memory : int) -> None:
27
+ facefusion.globals.max_memory = max_memory if max_memory > 0 else None
facefusion/uis/components/output.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple, Optional
2
+ import gradio
3
+
4
+ import facefusion.globals
5
+ from facefusion import wording
6
+ from facefusion.core import limit_resources, conditional_process
7
+ from facefusion.uis.core import get_ui_component
8
+ from facefusion.normalizer import normalize_output_path
9
+ from facefusion.filesystem import is_image, is_video, clear_temp
10
+
11
+ OUTPUT_IMAGE : Optional[gradio.Image] = None
12
+ OUTPUT_VIDEO : Optional[gradio.Video] = None
13
+ OUTPUT_START_BUTTON : Optional[gradio.Button] = None
14
+ OUTPUT_CLEAR_BUTTON : Optional[gradio.Button] = None
15
+
16
+
17
+ def render() -> None:
18
+ global OUTPUT_IMAGE
19
+ global OUTPUT_VIDEO
20
+ global OUTPUT_START_BUTTON
21
+ global OUTPUT_CLEAR_BUTTON
22
+
23
+ OUTPUT_IMAGE = gradio.Image(
24
+ label = wording.get('output_image_or_video_label'),
25
+ visible = False
26
+ )
27
+ OUTPUT_VIDEO = gradio.Video(
28
+ label = wording.get('output_image_or_video_label')
29
+ )
30
+ OUTPUT_START_BUTTON = gradio.Button(
31
+ value = wording.get('start_button_label'),
32
+ variant = 'primary',
33
+ size = 'sm'
34
+ )
35
+ OUTPUT_CLEAR_BUTTON = gradio.Button(
36
+ value = wording.get('clear_button_label'),
37
+ size = 'sm'
38
+ )
39
+
40
+
41
+ def listen() -> None:
42
+ output_path_textbox = get_ui_component('output_path_textbox')
43
+ if output_path_textbox:
44
+ OUTPUT_START_BUTTON.click(start, inputs = output_path_textbox, outputs = [ OUTPUT_IMAGE, OUTPUT_VIDEO ])
45
+ OUTPUT_CLEAR_BUTTON.click(clear, outputs = [ OUTPUT_IMAGE, OUTPUT_VIDEO ])
46
+
47
+
48
+ def start(output_path : str) -> Tuple[gradio.Image, gradio.Video]:
49
+ facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, output_path)
50
+ limit_resources()
51
+ conditional_process()
52
+ if is_image(facefusion.globals.output_path):
53
+ return gradio.Image(value = facefusion.globals.output_path, visible = True), gradio.Video(value = None, visible = False)
54
+ if is_video(facefusion.globals.output_path):
55
+ return gradio.Image(value = None, visible = False), gradio.Video(value = facefusion.globals.output_path, visible = True)
56
+ return gradio.Image(), gradio.Video()
57
+
58
+
59
+ def clear() -> Tuple[gradio.Image, gradio.Video]:
60
+ if facefusion.globals.target_path:
61
+ clear_temp(facefusion.globals.target_path)
62
+ return gradio.Image(value = None), gradio.Video(value = None)