Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import openai | |
import torch | |
import gradio as gr | |
import pytube as pt | |
from transformers import pipeline | |
from huggingface_hub import model_info | |
openai.api_key = os.getenv('OPEN_AI_KEY') | |
hf_t_key = ('HF_TOKEN_KEY') | |
MODEL_NAME = "openai/whisper-small" | |
lang = "en" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
def transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded a recorded audio file . " | |
"The recorded file from the microphone uploaded, transcribed and immediately discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
text = pipe(file)["text"] | |
return warn_output + text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
text = pipe("audio.mp3")["text"] | |
return html_embed_str, text | |
def predict(message, history): | |
history_openai_format = [] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content": assistant}) | |
history_openai_format.append({"role": "user", "content": message}) | |
response = openai.ChatCompletion.create( | |
model= 'ft:gpt-3.5-turbo-0125:2292030-peach-tech:colleague-ai:9Ag6BysG', | |
messages= history_openai_format, | |
temperature=1.0, | |
stream=True | |
) | |
partial_message = "" | |
for chunk in response: | |
if len(chunk['choices'][0]['delta']) != 0: | |
partial_message = partial_message + chunk['choices'][0]['delta']['content'] | |
yield partial_message | |
A1 = gr.ChatInterface(predict, | |
title="COLLEAGUE", | |
description="An All-In-One AI Productivity Suite By Peach State Innovation and Technology. Select The Corresponding Tab For Accessibility", | |
textbox=gr.Textbox(placeholder="Enter your question/prompt here..."), | |
theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate"), | |
retry_btn=None, | |
clear_btn="Clear Conversation") | |
A3 = gr.load( | |
"models/Salesforce/blip-image-captioning-large", | |
title=" ", | |
description="Upload Any Type of Imagery (photos, medical imagery, etc.), I'll Give You Its Description", | |
outputs=[gr.Textbox(label="I see...")], | |
theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate")) | |
A4 = gr.load( | |
"models/stabilityai/stable-diffusion-xl-base-1.0", | |
inputs=[gr.Textbox(label="Enter Your Image Description")], | |
outputs=[gr.Image(label="Image")], | |
title=" ", | |
description="Bring Your Imagination Into Existence, Create Unique Images With COLLEAGUE", | |
allow_flagging="never", | |
examples=["A gigantic celtic leprechaun wandering the streets of downtown Atlanta","A child eating pizza in a Brazilian favela"]) | |
A5 = gr.HTML( | |
value=(""" | |
<iframe | |
src="https://peachtechai-colleague-scribe.hf.space" | |
frameborder="0" | |
width="1245" | |
height="1450" | |
></iframe>"""), | |
) | |
A6 = gr.load( | |
"models/Falconsai/text_summarization", | |
title="", | |
description="Enter Text From Documents (from paragraphs to pages) and Instantly Create A Brief Summarization.", | |
theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate")) | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Microphone(type="filepath"), | |
gr.Audio(type="filepath"), | |
], | |
outputs="text", | |
title=" ", | |
description=( | |
"Transcribe real-time speech and audio files of any length at the click of a button." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[gr.Textbox(lines=1, placeholder="Paste your YouTube video URL/web address here", label="YouTube Video URL")], | |
outputs=["html", "text"], | |
title=" ", | |
description=( | |
"Short on Time? Get The Core Details and Transcribe YouTube videos at the click of a button." | |
), | |
allow_flagging="never", | |
) | |
clp = gr.TabbedInterface([A1, A5, A6, mf_transcribe, yt_transcribe, A3, A4], ["Chat", "Write", "Summarize", "Audio Transcription", "Video Transcription", "Describe", "Create"], theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate")) | |
clp.queue().launch() |