ChatBotAgenticRAG_dup / pipeline.py
Phoenix21's picture
Update pipeline.py
9bce9c2 verified
import os
import getpass
import spacy
import pandas as pd
from typing import Optional, List, Dict, Any
import subprocess
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import DuckDuckGoSearchTool, ManagedAgent
from pydantic import BaseModel, Field, ValidationError, validator
from mistralai import Mistral
# Import Google Gemini model
from langchain_google_genai import ChatGoogleGenerativeAI
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt
# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
# Setup ChatGoogleGenerativeAI for Gemini
# Ensure GOOGLE_API_KEY is set in your environment variables.
gemini_llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.5,
max_retries=2,
google_api_key=os.environ.get("GEMINI_API_KEY"),
# Additional parameters or safety_settings can be added here if needed
)
# Initialize ManagedAgent for web search using Gemini
# pydantic_agent = ManagedAgent(
# llm=ChatGoogleGenerativeAI(
# model="gemini-1.5-pro",
# temperature=0.5,
# max_retries=2,
# google_api_key=os.environ.get("GEMINI_API_KEY"),
# ),
# tools=[DuckDuckGoSearchTool()]
# )
class QueryInput(BaseModel):
query: str = Field(..., min_length=1, description="The input query string")
@validator('query')
def check_query_is_string(cls, v):
if not isinstance(v, str):
raise ValueError("Query must be a valid string")
if v.strip() == "":
raise ValueError("Query cannot be empty or just whitespace")
return v.strip()
class ModerationResult(BaseModel):
is_safe: bool = Field(..., description="Whether the content is safe")
categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
original_text: str = Field(..., description="The original input text")
def install_spacy_model():
try:
spacy.load("en_core_web_sm")
print("spaCy model 'en_core_web_sm' is already installed.")
except OSError:
print("Downloading spaCy model 'en_core_web_sm'...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
print("spaCy model 'en_core_web_sm' downloaded successfully.")
install_spacy_model()
nlp = spacy.load("en_core_web_sm")
def sanitize_message(message: Any) -> str:
"""Sanitize message input to ensure it's a valid string."""
try:
if hasattr(message, 'content'):
return str(message.content).strip()
if isinstance(message, dict) and 'content' in message:
return str(message['content']).strip()
if isinstance(message, list) and len(message) > 0:
if isinstance(message[0], dict) and 'content' in message[0]:
return str(message[0]['content']).strip()
if hasattr(message[0], 'content'):
return str(message[0].content).strip()
return str(message).strip()
except Exception as e:
raise RuntimeError(f"Error in sanitize function: {str(e)}")
def extract_main_topic(query: str) -> str:
try:
query_input = QueryInput(query=query)
doc = nlp(query_input.query)
main_topic = None
for ent in doc.ents:
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
main_topic = ent.text
break
if not main_topic:
for token in doc:
if token.pos_ in ["NOUN", "PROPN"]:
main_topic = token.text
break
return main_topic if main_topic else "this topic"
except Exception as e:
print(f"Error extracting main topic: {e}")
return "this topic"
def moderate_text(query: str) -> ModerationResult:
try:
query_input = QueryInput(query=query)
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query_input.query}]
)
is_safe = True
categories = {}
if hasattr(response, 'results') and response.results:
categories = {
"violence": response.results[0].categories.get("violence_and_threats", False),
"hate": response.results[0].categories.get("hate_and_discrimination", False),
"dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False),
"selfharm": response.results[0].categories.get("selfharm", False)
}
is_safe = not any(categories.values())
return ModerationResult(
is_safe=is_safe,
categories=categories,
original_text=query_input.query
)
except ValidationError as e:
raise ValueError(f"Input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Moderation failed: {str(e)}")
def classify_query(query: str) -> str:
try:
query_input = QueryInput(query=query)
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
if any(keyword in query_input.query.lower() for keyword in wellness_keywords):
return "Wellness"
class_result = classification_chain.invoke({"query": query_input.query})
classification = class_result.get("text", "").strip()
return classification if classification != "" else "OutOfScope"
except ValidationError as e:
raise ValueError(f"Classification input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Classification failed: {str(e)}")
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
try:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
except Exception as e:
raise RuntimeError(f"Error building/loading vector store: {str(e)}")
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA:
"""Build RAG chain using the Gemini LLM directly without a custom class."""
try:
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=gemini_llm, # Directly use the ChatGoogleGenerativeAI instance
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return chain
except Exception as e:
raise RuntimeError(f"Error building RAG chain: {str(e)}")
def do_web_search(query: str) -> str:
try:
search_tool = DuckDuckGoSearchTool()
search_agent = ManagedAgent(llm=gemini_llm, tools=[search_tool])
search_result = search_agent.run(f"Search for information about: {query}")
return str(search_result).strip()
except Exception as e:
print(f"Web search failed: {e}")
return ""
def merge_responses(csv_answer: str, web_answer: str) -> str:
try:
if not csv_answer and not web_answer:
return "I apologize, but I couldn't find any relevant information."
if not web_answer:
return csv_answer
if not csv_answer:
return web_answer
return f"{csv_answer}\n\nAdditional information from web search:\n{web_answer}"
except Exception as e:
print(f"Error merging responses: {e}")
return csv_answer or web_answer or "I apologize, but I couldn't process the information properly."
def run_pipeline(query: str) -> str:
try:
print(query)
sanitized_query = sanitize_message(query)
query_input = QueryInput(query=sanitized_query)
topic = extract_main_topic(query_input.query)
moderation_result = moderate_text(query_input.query)
if not moderation_result.is_safe:
return "Sorry, this query contains harmful or inappropriate content."
classification = classify_query(moderation_result.original_text)
if classification == "OutOfScope":
refusal_text = refusal_chain.run({"topic": topic})
return tailor_chain.run({"response": refusal_text}).strip()
if classification == "Wellness":
rag_result = wellness_rag_chain({"query": moderation_result.original_text})
if isinstance(rag_result, dict) and "result" in rag_result:
csv_answer = str(rag_result["result"]).strip()
else:
csv_answer = str(rag_result).strip()
web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
final_merged = merge_responses(csv_answer, web_answer)
return tailor_chain.run({"response": final_merged}).strip()
if classification == "Brand":
rag_result = brand_rag_chain({"query": moderation_result.original_text})
if isinstance(rag_result, dict) and "result" in rag_result:
csv_answer = str(rag_result["result"]).strip()
else:
csv_answer = str(rag_result).strip()
final_merged = merge_responses(csv_answer, "")
return tailor_chain.run({"response": final_merged}).strip()
refusal_text = refusal_chain.run({"topic": topic})
return tailor_chain.run({"response": refusal_text}).strip()
except ValidationError as e:
raise ValueError(f"Input validation failed: {str(e)}")
except Exception as e:
raise RuntimeError(f"Error in run_pipeline: {str(e)}")
def run_with_chain(query: str) -> str:
try:
return run_pipeline(query)
except Exception as e:
print(f"Error in run_with_chain: {str(e)}")
return "I apologize, but I encountered an error processing your request. Please try again."
# Initialize chains and vectorstores
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
wellness_rag_chain = build_rag_chain(wellness_vectorstore)
brand_rag_chain = build_rag_chain(brand_vectorstore)
print("Pipeline initialized successfully!")